API src

Found 58 results.

Similar terms

s/tiga/Taiga/gi

GTS Bulletin: ISID11 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISID11 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISI): Intermediate synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 26229;AINAZI;26238;RUJIENA;26313;KOLKA;26314;VENTSPILS;26318;STENDE;26324;MERSRAGS;26326;SKULTE;26335;PRIEKULI;26339;ZOSENI;26346;ALUKSNE;26348;GULBENE;26403;PAVILOSTA;26406;LIEPAJA;26416;SALDUS;26422;RIGA;26424;DOBELE;26425;JELGAVA;26429;BAUSKA;26435;SKRIVERI;26436;ZILANI;26446;REZEKNE;26447;MADONA;26544;DAUGAVPILS;26503;RUCAVA;26551;) (Remarks from Volume-C: BUFR307096)

Wachstumsmonitoring im borealen Wald: Das Stammdickenwachstum von Fichte, Kiefer, Aspe und Birke im Jahresverlauf - Wann beginnt es, wie ist der Verlauf, wann endet es?

Das Projekt "Wachstumsmonitoring im borealen Wald: Das Stammdickenwachstum von Fichte, Kiefer, Aspe und Birke im Jahresverlauf - Wann beginnt es, wie ist der Verlauf, wann endet es?" wird/wurde ausgeführt durch: Universität Freiburg, Professur für Waldwachstum.In Kooperation mit Partnern aus Russland und Finnland haben wir in einem naturnahen Mischbestand in der mittleren Taiga in NW-Russland (forstliche Versuchsstation Lyaly, Republik Komi) eine ökologische Freilandmessstation installiert. Dort werden die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) mit Punkt-Dendrometern zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich die elektrische Leitfähigkeit der Baumstämme kontinuierlich gemessen. An der Messstation ist auch ein Magnetometer installiert, der Änderungen im Erdmagnetfeld aufzeichnet. Mit dieser speziellen Messeinrichtung ist es möglich, Auswirkungen von Schwankungen des Erdmagnetfeldes auf die Hydrologie und das Baumwachstum zu erkennen und zu analysieren. Das Wachstumsmonitoring liefert Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten der Bäum im borealen Wald. Damit werden wichtige Grundlagen für die Abschätzung der Potenziale und Risiken vorhergesagter Umweltveränderungen geschaffen.

Meteogramm bis H+78 EVRA Riga - Meteogram up to H+78 EVRA Riga

3 Tage Vorhersage. Wind, Temperatur, Bodendruck, Bedeckung, Konvektionswolken und Niederschlag. - 3 days forecast. Wind, temperature, pressure mean sea level, cloud cover, convective clouds and precipitation.

Catalysing and building capacities for renewable energy communities in rural Latvia

Das Projekt "Catalysing and building capacities for renewable energy communities in rural Latvia" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Heinrich-Böll-Stiftung Schleswig-Holstein e.V..

Emissionen der Landnutzung, -änderung und Forstwirtschaft

Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden. Bedeutung von Landnutzung und Forstwirtschaft Der Kohlenstoffzyklus stellt im komplexen Klimasystem unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO 2 ) aus der Luft mittels ⁠ Photosynthese ⁠ gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe FAO Report 2020 ). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere ⁠ boreale ⁠ Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des Klimarahmenabkommens der Vereinten Nationen werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), ⁠ Aerosole ⁠ oder Vorläufersubstanzen von Treibhausgasen aus der ⁠ Atmosphäre ⁠ entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe IPCC Special Report on Land Use, Land Use Change and Forestry ). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung von den Treibhausgasen CO 2 , Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht. Die voran genannten Prozesse werden unter der Kategorie/Sektor „Landnutzung, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“ (kurz ⁠ LULUCF ⁠) bilanziert. Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der ⁠ Landnutzung ⁠ entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch Struktur der Flächennutzung ). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische ⁠Biomasse⁠, ⁠Totholz⁠, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien. Allgemeine Emissionsentwicklung Die aktuelle Emissionsentwicklung ist für den Sektor ⁠ LULUCF ⁠ zunehmend dramatisch. In den letzten Jahren ist der Sektor von einer abnehmenden Netto-Kohlenstoffspeicherung im Wald sowie von hohen THG-Emissionen der organischen Böden des Acker- und Grünlands geprägt (Netto THG-Emissionen in 1990: rund +40 Mio. t CO 2 Äquivalente und in 2022: + 4 Mio. t CO 2 Äquivalente). Im Rahmen des novellierten Klimaschutzgesetzes (KSG) wird eine Schätzung für das Vorjahr Vorjahr 2023 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 3,6 Mio. t CO 2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2024 für das Jahr 2022 betrachtet. Veränderung des Waldbestands Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO 2 für die Kategorie Wald werden auf Grundlage von Bundeswaldinventuren berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als Netto-Kohlenstoffsenke. In der Waldkategorie sind die Pools ⁠ Biomasse ⁠ (69,6%), mineralische Böden (21,8 %) und ⁠ Totholz ⁠ (8,6 %) ausschlaggebend. Zu den Emissionsquellen im Wald zählen Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Zusammen machen diese Emissionsquellen nur einen Anteil von 7,4 % an der Treibhausgasmenge des deutschen Waldes aus. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten (siehe dazu NIR ). In 1990 wurden rund -19,5 Mio. t CO 2 -Äquivalente im Wald an CO 2 -Emissionen gespeichert. Im Jahr 2022 waren es -39,7 Mio. t CO 2 -Äquivalente (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft“). Inwieweit die Ereignisse der letzten Jahre wie Stürme, ⁠ Dürre ⁠ und Insekten Einfluss auf den Kohlenstoffspeicher Wald haben, werden erst die Analysen der Bundeswaldinventur 2022 aufzeigen, deren Ergebnisse kontinuierlich ab dem Jahr 2023 (und der Berichterstattung 2025) im ⁠ LULUCF ⁠-Inventar berücksichtigt werden können. Offensichtlich ist aber: Der Zustand des deutschen Waldes ist zunehmend besorgniserregend. Treibhausgas-Emissionen aus Waldbränden Bei Waldbränden werden neben CO 2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH 4 , N 2 O, NOx und ⁠ NMVOC ⁠) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der Waldbrandstatistik erfassten Waldbrandflächen bestätigt wird. Das Jahr 2022 war ein überdurchschnittliches Waldbrandjahr im Vergleich zum langjährigen Mittel. Dies gilt sowohl hinsichtlich der Anzahl auftretender Waldbrände als auch in Bezug auf die jeweils betroffene Waldfläche pro Brand (siehe mehr zu Waldbränden ). Durch die Brände wurden ca. 0,28 Mio. t CO 2 -Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO 2 -Emissionen aus Waldbrand (0,25 Mio. t CO 2 -Äquivalente) betrachtet, machen diese im Verhältnis zu den CO 2 -Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus. Veränderungen bei Ackerland und Grünland Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO 2 aus mineralischen und organischen Böden, der ober- und unterirdischen ⁠ Biomasse ⁠ sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach ⁠ Landnutzungsänderung ⁠ sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich Landwirtschaft unter landwirtschaftliche Böden berichtet. Für die Landnutzungskategorie Ackerland betrugen im Jahr 2022 die THG-Gesamtemissionen 15,6 Mio. t CO 2 Äquivalente und fielen damit um 0,9 Mio. t CO 2 Äquivalente ≙ 6 % größer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich ⁠ Landnutzung ⁠, Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (74,1 %) und die Mineralböden (21,2 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die ⁠ anthropogen ⁠ bedingte Netto-Freisetzung von CO 2 aus der Biomasse (4,7 %) ist im Ackerlandsektor gering. Dominierendes ⁠ Treibhausgas ⁠ in der Kategorie Ackerland ist CO 2 (2022: 14,7 Mio. t CO 2 Äquivalente, rund 97 %). Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO 2 -Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden Netto-THG-Emissionen insgesamt in Höhe von 22,1 Mio. t CO 2 Äquivalenten errechnet. Diese fallen um rund 6,7 Mio. t CO 2 Äquivalente ≙ 23 % niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die zunehmende Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2022 -5,1 Mio. t CO 2 . Moore (organische Böden) Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2022 wurden aus Moorböden um die 53,4 Mio. t CO 2 Äquivalente an THG-Emissionen (CO 2 -Emissionen: 47,9 Mio. t CO 2 Äquivalente, Methan-Emissionen: 1,7 Mio. t CO 2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO 2 Äquivalente) freigesetzt. Das entspricht etwas mehr als 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2022. (siehe Abb. "⁠ Treibhausgas ⁠-Emissionen aus Mooren"). Die Menge an freigesetzten CO 2 -Emissionen aus Mooren ist somit höher als die gesamten CO 2 -Emissionen des Industriesektors (41,0 Mio. t CO 2 ). Landwirtschaftlich genutzte Moorböden Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 43,0 Mio. t CO 2 -Äquivalente in 2022 (folgende Angaben in Mio. t CO 2 -Äquivalente: CO 2 : 38,6, Methan: 1,0 und Lachgas: 3,2) freigesetzt, was insgesamt einem Anteil von 80,5 % an den THG-Emissionen aus Mooren entspricht. Feuchtgebiete Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: ⁠ Emission ⁠ aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO 2 -Emissionen liegen bei rund 2,0 Mio. t CO 2 -Äquivalente. Im Inventar neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 9,7 Mio. t CO 2 -Äquivalenten im Jahr 2022 und haben im Trend gegenüber dem Basisjahr 1990 um 10 % zugenommen. Diese Zunahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen. Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen Im novellierten Bundes-Klimaschutzgesetz sind in § 3a Klimaziele für den ⁠ LULUCF ⁠-Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t ⁠ CO2 ⁠-Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das ⁠ BMUV ⁠ hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von naturbasierten Lösungen für den Klimaschutz hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen! ) hingewiesen Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt (Verordnung 1307/2013/EU) . Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe Charta für Holz 2.0 ) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft (⁠ BMEL ⁠) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter Klimaschutz in der Landwirtschaft . Die ⁠ Treibhausgas ⁠-Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO 2 -Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe Moorklimaschutz ).

Ökologische Grundlagen des Waldwachstums, Wachstumsmonitoring von Fichte, Kiefer, Aspe und Birke in der mittleren Taiga, Komi, NW-Russland

Das Projekt "Ökologische Grundlagen des Waldwachstums, Wachstumsmonitoring von Fichte, Kiefer, Aspe und Birke in der mittleren Taiga, Komi, NW-Russland" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Universität Freiburg, Professur für Waldwachstum.In einem naturnahen Mischbestand werden an der forstlichen Versuchsstation Lyaly (Republik Komi) die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich im 5-Minuten Takt die elektrische Leitfähigkeit des Stammes registriert. Gleichzeitig werden die Lufttemperatur, die Luftfeuchte sowie die Bodenfeuchte gemessen. Am Untersuchungsstandort werden mit einem Magnetometer Schwankungen des Erdmagnetfeldes in den drei Raumrichtungen registriert. Aus den Analysen werden Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten von Bäumen erwartet.

Anpassungen an den Klimawandel - Erhöhung der Wasserretention, Bodenstabilität und CO2-Bindung in Waldböden durch Moose, Teilvorhaben 2: Ökophysiologie, Ökohydrologie, Mikroklima

Das Projekt "Anpassungen an den Klimawandel - Erhöhung der Wasserretention, Bodenstabilität und CO2-Bindung in Waldböden durch Moose, Teilvorhaben 2: Ökophysiologie, Ökohydrologie, Mikroklima" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: CEBra-Centrum für Energietechnologie Brandenburg e.V..Für den Wald wird Trockenstress als eine der gravierendsten Auswirkungen des Klimawandels angesehen. In diesem Zusammenhang sind Waldböden in ihrer hydrologischen Funktion, sowie ihre Rückkopplungen mit der Bodenvegetation von großer Bedeutung. Unter Wald stellen Laub- und Lebermoose einen wichtigen ökologischen Faktor als Wasserreservoir und Bodenstabilisator dar. Dabei spielen sie speziell bei der Naturverjüngung und nach Aufforstungen eine bedeutende Rolle. Moose beeinflussen den Oberflächenabfluss und bilden so einen wirksamen Schutz gegen Erosion, welcher speziell in Jungbeständen und an Störungsstellen z.B. nach Waldarbeiten zum Tragen kommt. Eine großflächige Bedeckung des Waldbodens durch Moose kann große Mengen Wasser speichern und verzögert in Trockenphasen wieder abgeben. Bei zunehmenden Niederschlägen können Moose somit auch eine Infiltrationsbarriere in tiefere Bodenschichten darstellen. Diese ökohydrologischen Prozesse und Wechselwirkungen sowie deren Auswirkungen auf den Bodenwasserhaushalt sind quantitativ wenig untersucht und verstanden. Neben der ökohydrologischen Bedeutung sind Moose zudem ein wichtiger Faktor im globalen Kohlenstoffkreislauf und z.B. in gemäßigten und borealen Wäldern für ein Fünftel der Kohlenstoff-Nettoaufnahme verantwortlich. Auch hier und insbesondere in jungen Wäldern, ist bislang nur wenig über die Rolle von Moosgesellschaften für den Kohlenstoffkreislauf bekannt. Bei der Beschreibung aller oben genannten Effekte lassen sich deutlich artspezifische Wechselwirkungen beobachten, die im Detail bisher kaum beachtet und von der Wissenschaft behandelt wurden. Vor diesem Hintergrund sollen Möglichkeiten der Anpassung an den Klimawandel in Form der Erhöhung der Wasserretention, der Strukturstabilität und der CO2-Bindung in Waldböden durch Waldmoose untersucht werden.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Bi-stabilität von borealen Wälder am El'gygytgyn See (NO Russland) während der Interglaziale der letzten 2,15 Millionen Jahre

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Bi-stabilität von borealen Wälder am El'gygytgyn See (NO Russland) während der Interglaziale der letzten 2,15 Millionen Jahre" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.Die ökosystemaren Dienstleistungen borealer Wälder sind von zentraler Bedeutung für das Wohlergehen der Menschheit und unterscheiden sich stark zwischen immergrünen und summergrünen Nadelwäldern. In dem vorgeschlagenen Projekt soll die höchst-relevante Frage beantwortet werden 'Warum Nordasien im Holozän von Lärchenwäldern dominiert wird wohingegen es in früheren Interglazialen trotz scheinbar gleicher klimatischer Bedingungen von immergrünen Nadelwäldern bedeckt war?. Wir vermuten, dass sommergrüne und immergrüne Nadelwälder alternative stabile Zustände von borealen Wäldern darstellen die unter gleichen Klimabedingungen vorkommen, jedoch durch unterschiedliche Umweltbedigungen während des vorangegangenen Glazials geprägt werden u.a. durch die unterschiedliche Zusammensetzung der glazialen Refugien.Diese Hypothese wollen wir mit Hilfe einer Multi-Proxy-Analyse von Sedimenten des El'gygytgyn-Sees (Chukotka, NO Asien) untersuchen, die im Rahmen des ICDP Programms gewonnen wurden.Die Untersuchungen im Work Package 1 (AG M. Melles) zielen auf die Rekonstruktion der regionalen Vegetationsveränderungen innerhalb der letzten 2 Millionen Jahre anhand der Analyse von ca. 500 Pollenspektren und deren Integration in den vorhanden Pollendatensatz.Die Untersuchung der sedimentären fossilen DNA im Rahmen von Work Package 2 (AG U. Herzschuh) soll die Interpretierbarkeit von der Pollendaten ermöglichen. Insbesondere soll die regionale Natur der Pollensignals verifiziert werden. Außerdem soll anhand von artspezifischen DNA-Markern überprüft werden, ob es sich bei denen im Pollensignal ermittelten holzigen Gattungen um baum- oder buschförmige Arten handelt.Die Rekonstruktion der regionalen Klimaänderungen anhand von Untersuchungen des stabilen Sauerstoffsignals von Diatomeenschalen ausgewählter Glazial-Interglazial-Zyklen steht im Zentrum von Work Package 3 (AG H. Meyer). Die erzielten Ergebnisse sollen genutzt werden um zu überprüfen, welche der global verfügbare hoch-auflösende Paläoklimasequenzen das regionale Klima in Nord-Asien auf Glazial-Interglazial-Zeitskala verlässlich abbilden.Alle erzielten Ergebnisse sollen dann in Work Package 4 durch alle Projekt-Beteiligte zusammengeführt und re-analysiert werden um die postulierte Hypothese zu untersuchen.

GTS Bulletin: ISND11 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND11 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 26229;AINAZI;26238;RUJIENA;26313;KOLKA;26314;VENTSPILS;26318;STENDE;26324;MERSRAGS;26326;SKULTE;26335;PRIEKULI;26339;ZOSENI;26346;ALUKSNE;26348;GULBENE;26403;PAVILOSTA;26406;LIEPAJA;26416;SALDUS;26422;RIGA;26424;DOBELE;26425;JELGAVA;26429;BAUSKA;26435;SKRIVERI;26436;ZILANI;26446;REZEKNE;26447;MADONA;26544;DAUGAVPILS;26503;RUCAVA;26551; DAGDA;) (Remarks from Volume-C: BUFR307096)

GTS Bulletin: ISMD11 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISMD11 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISM): Main synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 26229;AINAZI;26238;RUJIENA;26313;KOLKA;26314;VENTSPILS;26318;STENDE;26324;MERSRAGS;26326;SKULTE;26335;PRIEKULI;26339;ZOSENI;26346;ALUKSNE;26348;GULBENE;26403;PAVILOSTA;26406;LIEPAJA;26416;SALDUS;26422;RIGA;26424;DOBELE;26425;JELGAVA;26429;BAUSKA;26435;SKRIVERI;26436;ZILANI;26446;REZEKNE;26447;MADONA;26544;DAUGAVPILS;26503;RUCAVA;26551;DAGDA) (Remarks from Volume-C: BUFR307096)

1 2 3 4 5 6