API src

Found 60 results.

Similar terms

s/tiga/Riga/gi

Wachstumsmonitoring im borealen Wald: Das Stammdickenwachstum von Fichte, Kiefer, Aspe und Birke im Jahresverlauf - Wann beginnt es, wie ist der Verlauf, wann endet es?

In Kooperation mit Partnern aus Russland und Finnland haben wir in einem naturnahen Mischbestand in der mittleren Taiga in NW-Russland (forstliche Versuchsstation Lyaly, Republik Komi) eine ökologische Freilandmessstation installiert. Dort werden die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) mit Punkt-Dendrometern zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich die elektrische Leitfähigkeit der Baumstämme kontinuierlich gemessen. An der Messstation ist auch ein Magnetometer installiert, der Änderungen im Erdmagnetfeld aufzeichnet. Mit dieser speziellen Messeinrichtung ist es möglich, Auswirkungen von Schwankungen des Erdmagnetfeldes auf die Hydrologie und das Baumwachstum zu erkennen und zu analysieren. Das Wachstumsmonitoring liefert Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten der Bäum im borealen Wald. Damit werden wichtige Grundlagen für die Abschätzung der Potenziale und Risiken vorhergesagter Umweltveränderungen geschaffen.

Ökologische Grundlagen des Waldwachstums, Wachstumsmonitoring von Fichte, Kiefer, Aspe und Birke in der mittleren Taiga, Komi, NW-Russland

In einem naturnahen Mischbestand werden an der forstlichen Versuchsstation Lyaly (Republik Komi) die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich im 5-Minuten Takt die elektrische Leitfähigkeit des Stammes registriert. Gleichzeitig werden die Lufttemperatur, die Luftfeuchte sowie die Bodenfeuchte gemessen. Am Untersuchungsstandort werden mit einem Magnetometer Schwankungen des Erdmagnetfeldes in den drei Raumrichtungen registriert. Aus den Analysen werden Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten von Bäumen erwartet.

Pflanzengeographie und Pflanzenoekologie des borealen Nadelwaldes

Der boreale Nadelwald, die Taiga, ist eines der groessten Oekosysteme der Erde. Doch seine verschiedenen Teilgebiete sind auch innerhalb des Postglazials recht unterschiedlich alt. Ebenso verschiedenartig sind die oekologischen Gegebenheiten. Es stellt sich die Frage, ob die Taiga als ein einziges Oekosystem betrachtet werden darf. Die laufenden oekologischen Untersuchungen sollen die Ursachen fuer den lichten Stand der Baeume in einzelnen Teilen der Taiga klaeren. Von Bedeutung sind dabei Fragen nach Art, Ort und Intensitaet der Wurzelkonkurrenz sowie nach den oekologischen Folgen der Nadelstreu und des Moos- und Flechtenteppichs im Hinblick auf den Wasser und Waermehaushalt und auf die Bestandesverjuengung. Die Untersuchungen werden in Kanada, Nordeuropa und Ostjakutien durchgefuehrt.

Catalysing and building capacities for renewable energy communities in rural Latvia

GTS Bulletin: ISND11 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND11 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 26229;AINAZI;26238;RUJIENA;26313;KOLKA;26314;VENTSPILS;26318;STENDE;26324;MERSRAGS;26326;SKULTE;26335;PRIEKULI;26339;ZOSENI;26346;ALUKSNE;26348;GULBENE;26403;PAVILOSTA;26406;LIEPAJA;26416;SALDUS;26422;RIGA;26424;DOBELE;26425;JELGAVA;26429;BAUSKA;26435;SKRIVERI;26436;ZILANI;26446;REZEKNE;26447;MADONA;26544;DAUGAVPILS;26503;RUCAVA;26551; DAGDA;) (Remarks from Volume-C: BUFR307096)

GTS Bulletin: ISMD11 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISMD11 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISM): Main synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 26229;AINAZI;26238;RUJIENA;26313;KOLKA;26314;VENTSPILS;26318;STENDE;26324;MERSRAGS;26326;SKULTE;26335;PRIEKULI;26339;ZOSENI;26346;ALUKSNE;26348;GULBENE;26403;PAVILOSTA;26406;LIEPAJA;26416;SALDUS;26422;RIGA;26424;DOBELE;26425;JELGAVA;26429;BAUSKA;26435;SKRIVERI;26436;ZILANI;26446;REZEKNE;26447;MADONA;26544;DAUGAVPILS;26503;RUCAVA;26551;DAGDA) (Remarks from Volume-C: BUFR307096)

GTS Bulletin: ISID11 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISID11 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISI): Intermediate synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 26229;AINAZI;26238;RUJIENA;26313;KOLKA;26314;VENTSPILS;26318;STENDE;26324;MERSRAGS;26326;SKULTE;26335;PRIEKULI;26339;ZOSENI;26346;ALUKSNE;26348;GULBENE;26403;PAVILOSTA;26406;LIEPAJA;26416;SALDUS;26422;RIGA;26424;DOBELE;26425;JELGAVA;26429;BAUSKA;26435;SKRIVERI;26436;ZILANI;26446;REZEKNE;26447;MADONA;26544;DAUGAVPILS;26503;RUCAVA;26551;) (Remarks from Volume-C: BUFR307096)

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Sibirische Feuerregimeveränderungen in Interglazialen der letzten 3,6 Ma rekonstruiert aus Sedimentanalysen des El'gygytgyn Sees (NO Asien)

Die Vorhersage und Anpassung der Gesellschaft an die Folgen des gegenwärtigen Klimawandels benötigt ein tiefes Verständnis der natürlichen, internen Wechselwirkungen an der Erdoberfläche, unabhängig vom Einfluss der Menschen. Die arktische Tundra und die borealen Wälder reagieren besonders sensitiv auf Klimaveränderungen und beeinflussen globale biogeochemische und biophysikalische Mechanismen maßgeblich, z.B. über ihr Feuerregime. Allerdings sind die langfristigen Wechselwirkungen zwischen Feuerregime, Vegetation und Klima weitestgehend unklar, obwohl gerade die langfristige natürliche Variabilität stark die kurzfristige Variabilität beeinflusst. Besonders unbekannt ist, ob und wie die derzeitig stark ansteigenden Temperaturen über der Arktis zu Verschiebungen der Biome und zu Veränderungen der Feuerregime führen. Daher wird dieses Projekt nordostsibirische Feuerregimeveränderungen während mehrerer plio- und pleistozäner Interglaziale untersuchen und dabei das einzige kontinuierliche Sedimentarchiv der letzten 3,6 Millionen Jahre nutzen: den ICDP-See El'gygytgyn. Mit einer Fokussierung auf Interglaziale verschiedener klimatischer Ausprägung (z.B. der Temperaturen) und Vegetationstypen (Tundra, sommergrüner, immergrüner Nadelwald) bearbeite ich die höchst-relevanten Fragen, was die Langfriständerungen der Feuerregime in den hohen nördlichen Breiten steuert ist - Klima oder Vegetation, und welche internen Feuer-Permafrost Interaktionen die Vegetation stabilisieren oder destabilisieren. Regionale Feuerregime werden untersucht über die Analyse von mikroskopischer Holzkohle als Proxy für Hochintensitätsfeuer, die für den immergrünen Nadelwald charakteristisch sind, und, von den gleichen Proben, die neuen sedimentären Proxies für Geringtemperaturfeuer - die Anhydrozucker Levoglucosan und seine Isomere. Diese Biomarker entstehen bei Biomasseverbrennung kleiner als 350 Grad Celsius, z.B. in den für die sommergrünen borealen Lärchenwälder charakteristischen Bodenfeuern. Um die Steuergrößen für Feuerregimeveränderungen zu identifizieren werden die Feuerrekonstruktion statistisch mit Vegetationsrekonstruktionen von Pollen und unabhängigen Klimarekonstruktionen aus dem gleichen Archiv bzw. aus der Kompilation regionaler und globaler Archive verglichen. Um zu quantifizieren, inwieweit häufige Feuer die Permafrostdegradierung und -erosion und damit die internen Vegetations-Permafrost-Interaktionen beeinflussen, werden die Feuerzeitreihen mit regionalen und lokalen Erosionsproxyreihen aus der neuen Auswertung von Korngrößendaten mittels Endmember-Modellierung verglichen. Dabei ermöglichen die Probennahme und die Analysestrategie robuste und quantitative Aussagen, unabhängig von der absoluten Altersunsicherheit der Proben. Dadurch wird das Projekt zu einem neuen und essentiellen Verständnis zeitskalenabhängiger Wechselwirkungen zwischen Klima, Feuer, Vegetation und Permafrost beitragen um die derzeitigen Umweltveränderung langfristig besser einordnen zu können.

UNCHAIN

Projektbeginn: 2023 / Projektende: 2026 Zwischen 2012 und 2022 stieg der Anteil der Menschen, die Online-Einkaufsmöglichkeiten nutzen, von 55 % auf 75 % in der Europäischen Union. In Europa ist der Trend zu mehr und kleinteiligeren Sendungen zu verzeichnen, die zugleich an über das Stadtgebiet verteilte Ziele zugestellt werden. Sendungen werden seltener gebündelt an einzelne Ziele – beispielweise ein Kaufhaus – transportiert, sondern unter anderen vermehrt an Privatadressen zugestellt. Aber auch der Handel wird durch kleinteiligere Sendungen beliefert. Mit diesen Entwicklungen, die sich voraussichtlich auch in Zukunft fortsetzen werden, nimmt dabei der Lieferverkehr auf der letzten Meile zu, aber auch die Gesamtverkehrsleistung im Wirtschaftsverkehr wächst. Zum einen sind viele dieser Verkehre notwendig, um die Funktionalität von Städten sicherzustellen. Gleichzeitig wachsen mit dem Verkehr auch die Belastungen auf Umfeld und Umwelt. Es besteht dringender Handlungsbedarf, um die negativen Auswirkungen dieser Verkehre zu reduzieren. Als Partner im EU-Projekt UNCHAIN erarbeitet das Land Berlin in einem Konsortium von achtzehn Partnern aus acht unterschiedlichen Ländern Ansätze für eine nachhaltige urbane Logistik. Städte, Entwickler, Logistiker und Forschungseinrichtungen arbeiten gemeinsam an Lösungen, die die vielfältigen Herausforderungen im Wirtschaftsverkehr adressieren. Neben Madrid und Florenz fungiert Berlin als Living Lab und bekommt dabei eine besondere Rolle in der Testphase der entwickelten „Tools“. Die zu entwickelnden Lösungen decken dabei sowohl die planerisch/strategische Ebene (bspw. Evaluierungs-Tool für strategische Planwerke) wie auch die operative Ebene (bspw. Lastenrad-Routing) ab, damit neben der öffentlichen Hand auch die lokale Wirtschaft von den Lösungen profitieren kann. Durch den Test der Tools in insgesamt sieben europäischen Städten sowie die Evaluierung der Testphase soll die Übertragbarkeit der Ergebnisse sichergestellt werden. Partner und Living-Lab ULANC – University of Lancaster, Riga city council, Municipality of Funchal, UPS, Hlavni Mesto Praha, Stad Mechelen, DHL Express Spain, IBV Instituto de Biomecanica de Valencia, EIT Urban Mobility Foundation, POLIS Network, SPES Consulting SRL, Municipia SPA, Comune Di Firenze, VMZ Berlin, EMT Empresa Municipal de Transportes Madrid, Ayuntamiento de Madrid, ETRA Investigacion y Desarrollo (LEAD-Partner) Horizon Europe Programme (2021-2027) UNCHAIN

Meteogramm bis H+78 EVRA Riga - Meteogram up to H+78 EVRA Riga

3 Tage Vorhersage. Wind, Temperatur, Bodendruck, Bedeckung, Konvektionswolken und Niederschlag. - 3 days forecast. Wind, temperature, pressure mean sea level, cloud cover, convective clouds and precipitation.

1 2 3 4 5 6