Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe
Auf Blatt Stuttgart-Süd dominieren die mesozoischen Sedimentgesteine der Süddeutschen Schichtstufenlandschaft. Der Jura der Schwäbische Alb quert das Kartenblatt von Südwest nach Nordost und nimmt die größte Fläche ein. Durch ihre blaue Farbgebung heben sich die Kalk-, Mergel- und Tonsteine deutlich von ihrer Umgebung ab. Nach Nordwesten, vom Albvorland über die Gäue bis zum Nordschwarzwald, setzen sich die Schichtstufen in den Ausbissen von Keuper, Muschelkalk und Buntsandstein fort. In den Niederungen und Senken ist das Mesozoikum der Schichtstufenlandschaft z. T. von känozoischen Sedimenten überlagert, wie pleistozänem Löss, Verwitterungslehm, Hangschutt oder pliozänen Schottern der Ur-Donau. Im Kartenblatt ist zudem das Urach-Kirchheimer Vulkanitgebiet mit seinen Vulkanschloten erfasst. Es stellt eine Besonderheit zwischen den umgebenden Sedimentgesteinen dar. Ein verstärkter Magmatismus bewirkte hier im Tertiär das Aufdringen von Basalten und Basalttuffen. Nach Südosten tauchen die mesozoischen Gesteine der Schichtstufenlandschaft unter die Molassesedimente des Alpenvorlandes. Das Molassebecken, der Schutttrog der Alpen, ist mit tertiären Ablagerungen der Süßwasser-, Brackwasser- und Meeresmolasse verfüllt. Diese werden weitflächig von pleistozänen Deckschichten überlagert, z. B. von Schottern der Schmelzwasserflüsse bzw. Löss und Lösslehm. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologischer Schnitt zusätzliche Einblicke in den Aufbau des Untergrundes. Das Nordwest-Südost-Profil beginnt im Nordschwarzwald und quert in seinem Verlauf die Oberen Gäue, Schönbuch, Albvorland, die Schwäbische Alb sowie das Molassebecken des Alpenvorlandes. Eine strukturgeologische Karte mit eingetragenen Störungslinien, Erdbebenzonen, Epizentren und dem tertiären Vulkanitgebiet zwischen Bad Urach und Kirchheim veranschaulicht die endogenen Aktivitäten im Untergrund.
Blatt Freiburg-Nord zeigt den südlichen Oberrheingraben mit seinen beiden Flanken: den Vogesen im Westen und dem Schwarzwald im Osten. Der Schwarzwald, an der Ostflanke des Oberrheingrabens, wird von variszischen Graniten, Gneisen und Anatexiten aufgebaut. Bei der variszischen Faltung kam es zur Metamorphose präkambrischer Sedimentgesteine; zudem drangen im Oberkarbon granitische Tiefengesteinsplutone auf. Permische Rhyolithe (Quarzporphyre), die an mehreren Stellen des mittleren und nördlichen Schwarzwald zu finden sind, werden als Ignimbrite interpretiert. Nach Norden und Osten tauchen die Kristallingesteine des Schwarzwaldes unter das permo-mesozoische Deckgebirge. Am Westrand des Kartenblattes ist ein kleiner Teil der Nordvogesen angeschnitten. Der ebenfalls variszisch geprägte Gebirgszug ist von Struktur und Gesteinsaufbau dem Schwarzwald sehr ähnlich, jedoch sind größere Vorkommen paläozoischer Sedimente erhalten geblieben. So sind im Kartenausschnitt neben Graniten, Dioriten und Paragneisen auch kambrische bis silurische Schiefer sowie Schuttsedimente des Rotliegenden erfasst. Der Oberrheingraben durchzieht das Blatt von Südsüdwest nach Nordnordost. Die Grabenstruktur ist mit tertiären Sedimenten verfüllt. Das Tertiär tritt jedoch nur vereinzelt unter der quartären Deckschicht aus Löss- und Flugsanden, fluviatilen bzw. glazifluviatilen Ablagerungen, Verwitterungs- und Schwemmlehm zu Tage. Der Grabenrandbereich wird von den äußeren Randverwerfungen, an denen der vertikale Hauptversatz der Grabenstruktur stattfand, und Bruchfeldern mit Staffelbrüchen geringerer Verwurfshöhe gebildet. In den sogenannten Vorberg-Zonen sind Grundgebirge und permo-mesozoische Bedeckung staffelförmig gegen das Grabeninnere abgesunken und somit, vor Abtragung geschützt, erhalten geblieben. Am Westrand des Oberrheingrabens ist das Bruchfeld von Ribeauvillé, südlich der Vogesen, und das Bruchfeld von Zabern, in der Nordwest-Ecke des Kartenblattes, angeschnitten. Am Ostrand des Grabens sind die Vorbergzone von Emmendingen-Lahr und die Freiburger Bucht erfasst. Mit der Grabenbildung im Tertiär ging ein verstärkter Vulkanismus einher, der seinen Höhepunkt in der Förderung Olivin-nephelinitischer Schmelzen im Vulkangebiet des Kaiserstuhls fand. Die heute stark abgetragene Vulkanruine aus miozänen Vulkaniten und Tuffen ist von pleistozänem Löss ummantelt und teilweise überlagert. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, verdeutlicht eine tektonische Übersichtskarte die geologischen Großeinheiten im Kartenausschnitt. Ein geologischer Schnitt gewährt zusätzliche Einblick in den Aufbau des Untergrundes. Das West-Ost-Profil kreuzt den Oberrheingraben mit dem Kaiserstuhl und der Freiburger Bucht sowie die Kristallingesteine des Schwarzwaldes.
Blatt Freiburg-Süd erfasst den südlichen Oberrheingraben mit dem Schwarzwald als seine östliche Begrenzung sowie Teile des Schweizer Faltenjuras, Tafeljuras und des subalpinen Molassebeckens. Im Nordwesten des Kartenausschnitts ist der südliche Oberrheingraben abgebildet, dessen Trog mit Lockersedimenten des Tertiärs verfüllt ist. Die tertiäre Grabenfüllung tritt nur sehr vereinzelt unter der quartären Deckschicht aus fluviatilen bzw. glazifluviatilen Ablagerungen sowie pleistozänem Löss zu Tage. Der Randbereich des Grabens wird von den Vorberg-Zonen und der äußeren Randverwerfung gebildet. Im Kartenausschnitt sind die Müllheim-Kanderner Vorbergzone sowie die Freiburger Bucht erfasst. In diesen Bruchfeldern ist das Grund- und Deckgebirge staffelförmig gegen das Grabeninnere abgesunken und die permo-mesozoischen Deckschichten sind, vor Abtragung geschützt, erhalten geblieben. Der Schwarzwald, im Osten des Oberrheingrabens, wird von variszischen Graniten, Gneisen und Anatexiten aufgebaut. Bei der variszischen Faltung kam es zur Metamorphose präkambrischer Sedimentgesteine. Zudem drangen im Oberkarbon verstärkt granitische Tiefengesteine auf. Am Nordrand des Kartenblattes ist die Zentralschwarzwälder Gneismasse aufgeschlossen, der sich südlich die Badenweiler-Lenzkirch-Zone (altpaläozoische Schiefer, Konglomerate und Vulkanite) sowie der Südschwarzwälder Granit- und Gneiskomplex anschließen. Nach Osten und Süden tauchen die Kristallingesteine des Schwarzwaldes unter das permo-mesozoische Deckgebirge. Die Südhälfte des Kartenblattes wird vom Tafeljura, Schweizer Faltenjura sowie den känozoischen Molassesedimenten des Alpenvorlandes dominiert. Neben der Legende, die über Alter, Genese und Petrographie der Einheiten informiert, stellt eine tektonische Übersichtskarte die geologischen Großeinheiten im Kartenausschnitt anschaulich dar. Ein geologisches Profil gewährt zusätzliche Einblicke in den Aufbau des Untergrundes. Der Nord-Süd-Schnittt kreuzt die Vorbergzone, den Schwarzwald, das Juragebirge (Tafeljura und Schweizer Faltenjura) sowie das subalpine Molassebecken.
Der Förderkreis Sporttauchen e.V. (FKS) hat die Krebsschere (Stratiotes aloides) zur Wasserpflanze des Jahres 2003 gewählt.
Der Förderkreis Sporttauchen e.V. (FKS) hat das Großes Nixenkraut (Najas marina) zur Wasserpflanze des Jahres 2007 gewählt.
Der Förderkreis Sporttauchen e.V. (FKS) hat den Gemeinen Schwimmfarn (Salvinia natans) zur Wasserpflanze des Jahres 2008 gewählt.
Die Weiße Seerose (Nymphaea alba) ist Wasserpflanze des Jahres 2017. Die Weiße Seerose ist, mit Ausnahme des hohen Nordens, in ganz Europa verbreitet. Sie ist an nährstoffreiche, stehende und schwach fließende Gewässer angepasst. Die Wurzeln sind in humus- und nährstoffreichem Schlamm verankert. Die bevorzugte Wassertiefe beträgt rund ein bis eineinhalb Meter, die Blattstängel können bis 3 Meter lang werden und damit hält sie in Europa den Rekord der längsten Blattstiele. In den letzten Jahren hat der Förderkreis Sporttauchen e.V. die Wasserpflanzen ausgewählt. Zu Jahresbeginn 2011 haben das die nationalen Tauchsportverbände von Deutschland, Österreich und der Schweiz als gemeinsame Aufgabe grenzüberschreitend übernommen. Mit der Wahl der Weiße Seerose zur Wasserpflanze des Jahres möchten die Verbände auf die Gefährdung des Flachwasserbreiches aufmerksam machen. Dieser ist ein wichtiger Lebensraum für viele Wassertiere und -pflanzen.
Der Förderkreis Sporttauchen e.V. (FKS) hat den Südlichen Wasserschlauch (Utricularia australis) zur Wasserpflanze des Jahres 2004 gewählt.
Der Förderkreis Sporttauchen e.V. (FKS) hat das Durchwachsene Laichkraut (Potamogeton perfoliatus) zur Wasserpflanze des Jahres 2009 gewählt. Das Durchwachsene Laichkraut hat sein Vorkommen in oligo-, meso- und eutrophen Seen, Altwässern und Flüssen. Die natürlichen Vorkommen sind vielerorts durch Eutrophierung verschwunden.
Origin | Count |
---|---|
Bund | 89 |
Land | 34 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Ereignis | 8 |
Förderprogramm | 36 |
Text | 57 |
Umweltprüfung | 1 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 45 |
offen | 63 |
unbekannt | 9 |
Language | Count |
---|---|
Deutsch | 117 |
Englisch | 5 |
Resource type | Count |
---|---|
Archiv | 11 |
Bild | 3 |
Datei | 18 |
Dokument | 15 |
Keine | 67 |
Unbekannt | 2 |
Webdienst | 3 |
Webseite | 37 |
Topic | Count |
---|---|
Boden | 65 |
Lebewesen & Lebensräume | 100 |
Luft | 59 |
Mensch & Umwelt | 117 |
Wasser | 117 |
Weitere | 98 |