Solarzellen aus III-V Halbleitern erreichen heute weltweit die höchsten Umwandlungseffizienzen von bis zu 46% und finden industrielle Anwendung sowohl für Weltraumanwendungen, als auch für terrestrische PV Systeme (hier insbesondere CPV). Aktuell werden Solarzellen aus III -V Halbleitern auch für erste Anwendungen im Automotive -Bereich in Erwägung gezogen. Etwa die Hälfte der sehr hohen Epitaxiekosten für III-V Mehrfachsolarzellen entfällt dabei auf die metallorganischen Ausgangsstoffe, wie zum Beispiel Trimethylindium und Trimethylgallium (so genannte 'Metallorganika'). Im Gesamtprojekt KoReMO-2.0 soll nun im Verbund der Projektpartner nachgewiesen werden, dass diese Kosten durch die Nutzung einer neuartigen Indium -Quelle und einem neuen Zuführsystem, signifikant gesenkt werden können. Ferner sollen durch das neuartige Zuführsystem höhere Wachstumsraten erreicht werden. Diese technologischen Verbesserungen werden am Ende des Projektes anhand vollfunktionsfähiger GaInP/GaInAs/Ge Dreifachsolarzellen direkt nachgewiesen und im Anschluss nach industriellen Bewertungsmaßstäben evaluiert. Im Rahmen des Teilvorhabens von AZUR SPACE wird die etablierte Fertigungs - und Charakterisierungstechnologie für Ge-basierte III-V Mehrfachsolarzellen und das Know-how über industrielle Standardprozesse zur Herstellung der zugrundeliegenden Epitaxiestrukturen als Basis für die Bewertung der technologischen Verbesserungen dem Gesamtprojekt zur Verfügung gestellt. Konkrete Ziele im Teilvorhaben sind die Fertigung und Charakterisierung von Einzel - und Mehrfach- solarzellen aus den im Gesamtprojekt entstehenden Epitaxiestrukturen, die anschließende Bewertung und daraus resultierende Rückmeldungen und Unterstützung der Projektpartner, sowie die finale industrielle Evaluierung der im Gesamtprojekt erreichten Verbesserung durch die neuartigen Indium - Quellen und Zuführsystem Technologien.
Interpretation der Risikogesellschaft als Schluesselproblem der Politischen Bildung, Erarbeitung von didaktischen Perspektiven fuer die schulische und ausserschulische Paedagogik, Konkretisierung an Beispielen aus den Bereichen Technology Assessment und oekologischer Gesellschaftskonflikt.
Plastic is pouring from land into our oceans at a rate of nearly 10 million tonnes a year. Once in the sea, plastics fragment into particles moving with the currents and ocean gyres before washing up on the coastline. The smaller the size the higher the risk posed by these particles to organisms and human health. EU-funded LABPLAS will develop new techniques and models for the quantification of small micro- and nano plastics (SMNP). Specifically, LABPLAS will determine reliable identification methods for more accurate assessment of the abundance, distribution, and toxicity determination of SMNP and associated chemicals in the environment. It will also develop practical computational tools to facilitate the mapping of plastic-impacted hotspots and promote scientifically sound plastic governance.
Objective: There are 5,250 billion plastic particles floating on the surface on the world's seas and oceans, equivalent to 268,940 metric tons of waste. These fragments move with the currents before washing up on beaches, islands, coral atolls or one of the five great ocean gyres. Because MP cannot be removed form oceans, proactive action regarding research on plastic alternatives and strategies to prevent plastic entering the environment should be taken promptly. Despite the research increasing, there is still a lack of suitable and validated analytical methods for detection and quantification of small micro- and nano plastics (SMNP) evidencing a huge obstacle for large-scale monitoring. There is also a lack of hazard and fate data which would allow their risk assessment.
LABPLAS is a 48-months project whose vision is creating capacities (sampling, analysis and quantification techniques, new materials and new models) to evaluate rapidly and precisely the interactions of plastics with the environmental compartments and natural cycles leading to the development of effective mitigation and elimination measures, as well as, making management decisions. It will assess reliable identification methods for more accurate assessment of the abundance, distribution and toxicity determination of SMNP in the environment, giving the opportunity of new developments of cutting edge technologies. It will also develop practical computational tools that up-scaled should allow European agencies to map plastic-impacted hotspots. The project will have a multi-actor approach, creating scientific knowledge with a partnership of scientists, technicians, research organizations and enterprises, working together towards the recognition at different levels (society, industry, policy) of the main issues (sources, potential biodegradability, ecotoxicology, ingestion, environmental assessment) related to the presence of plastics in ecosystems.
Im Vergleich zu fossilen Energien greifen erneuerbare Energien wesentlich geringer in geologische und biologische Strukturen an Land und auf See ein, beanspruchen aber dezentral viel bzw. spezifisch geeignete Fläche. Da die zur Energieproduktion verfügbare Fläche qualitativ und quantitativ begrenzt ist, gehören zum künftigen Energiemix auch flächenextensive Technologien, die besonders wenig - etwa zur Nahrungsproduktion geeignete - Fläche beanspruchen, Teil einer Mehrfachnutzung sind oder für klassische Bauformen ungeeignete Standorte nutzen können. Eine dieser flächenextensiven und standortflexiblen Technologien ist die Airborne Wind Energie (AWE) - Höhenwindenergieanlagen. Als bislang im Raum weitgehend unbekannte Technologie stellt sich trotz, möglicherweise aber auch gerade wegen ihrer besonders extensiven Rauminanspruchnahme Fragen zur künftigen gesellschaftlichen Akzeptanz dieser Technologie. Dabei spielen, neben vermitteltem Wissen und rationalen Argumenten auch visuelle und akustische Wahrnehmungen, ästhetische Empfindungen und Beurteilungen sowie soziale Diskurse und Narrative eine akzeptanzbeeinflussende Rolle. In diesem Vorhaben werden für verschiedene Designvarianten der AWE Systeme, unter Berücksichtigung der optimalen Energieausbeute, die audiovisuellen Emissionen in Abhängigkeit der vielfältigen Design- und Umwelteinflüsse identifiziert und modelliert. Durch die Erweiterung bestehender Simulationsumgebungen für AWE Systeme mit diesen Emissionsmodellen wird eine ganzheitliche Analyse und Bewertung der Technologie hinsichtlich des potentiellen Beitrags zur Energiewende und gleichzeitig der, durch die lokalen Topographie- und Wetterbedingungen bedingten, Emissionswirkungen ermöglicht. Diese physikalische Simulation dient als Grundlage für die räumliche und energetische Bilanzierung von AWE Systemen, sowie für die mediale Visualisierungssimulation, welche ein Kernelement des Gesamtvorhabens darstellt und für die empirische Befragung genutzt werden soll.
Die Arbeiten aus dem vorhergehenden Zeitraum wurden fortgefuehrt. Wiederum erwies sich die Rollhacke mit zusaetzlichen Hackscharen wegen ihrer geringen Verstopfungsneigung und hohen Flaechenleistung auch fuer Rueben als gut geeignet. Der Vorauflaufeinsatz von Striegeln brachte gute Ergebnisse. Der Einsatz einer modifizierten Hacke brachte selbst bei Getreide (12 cm Reihenabstand) in Marokko so gute Erfolge, dass mechanische Verfahren auch kostenmaessig gut mit chemischen Verfahren konkurrieren koennen. Die Technikwirkungsanalyse einer in Entwicklung befindlichen selektiven, sensorgesteuerten Reihenhackmaschine erwies sich beim Maiseinsatz pflanzenbaulich-oekonomisch der Feldspritze ebenbuertig, oekologische jedoch deutlich ueberlegen.
1
2
3
4
5
…
85
86
87