API src

Found 297 results.

Similar terms

s/technische-textilien/Technische Textilien/gi

Biobasierte Reaktive Urethanfreie HotMelts, Teilvorhaben 1: Entwicklung und Erprobung von NCO freien biobasierten Prepolymeren

Reaktivschmelzklebstoffe (RHM) aus Polyurethan begegnen uns aufgrund ihrer herausragenden Eigenschaften zunehmend in Anwendungen wie im Verpackungs- und Automobilbereich bis hin zu technischen Textilien (prognostiziertes Marktwachstum 10-20 % auf ca. 100 kt/a). Als Hauptkomponente dient ein feuchtigkeitsvernetzendes PU-Prepolymer, das durch die Reaktion mit der Umgebungsfeuchte aushärtet. Die Hauptrohstoffe für die Herstellung des Prepolymers sind Polyole und Diisocyanate. Damit verbunden ist ein gravierender Nachteil dieser Klebstoffklasse: die Freisetzung gefährlichen Isocyanats (NCO) aus Resten von im Überschuss eingesetzten Monomeren oder infolge der Rückspaltung von Urethangruppen bei erhöhten Temperaturen wie sie bei der Verarbeitung oft gegeben sind. Die hoch reaktive NCO Gruppe birgt u.a. die Gefahr einer Sensibilisierung. Es besteht daher für diese Stoffklasse eine Kennzeichnungspflicht. Die derzeit alternativ verfügbaren RHM, liegen in ihrem Leistungsspektrum z. T. weit hinter den PU basierten zurück und konnten sich daher am Markt nicht behaupten. Ziel ist es, ein reaktives Schmelzklebstoffkonzept auf urethanfreier Basis (bezogen auf die Prepolymere und deren reaktive Endgruppen) zu erarbeiten.

Biobasierte Reaktive Urethanfreie HotMelts, Teilvorhaben 3: Modifizierung von Blockpolymeren

Reaktivschmelzklebstoffe (RHM) aus Polyurethan begegnen uns aufgrund ihrer herausragenden Eigenschaften zunehmend in Anwendungen wie im Verpackungs- und Automobilbereich bis hin zu technischen Textilien (prognostiziertes Marktwachstum 10-20 % auf ca. 100 kt/a). Als Hauptkomponente dient ein feuchtigkeitsvernetzendes PU-Prepolymer, das durch die Reaktion mit der Umgebungsfeuchte aushärtet. Die Hauptrohstoffe für die Herstellung des Prepolymers sind Polyole und Diisocyanate. Damit verbunden ist ein gravierender Nachteil dieser Klebstoffklasse: die Freisetzung gefährlichen Isocyanats (NCO) aus Resten von im Überschuss eingesetzten Monomeren oder infolge der Rückspaltung von Urethangruppen bei erhöhten Temperaturen wie sie bei der Verarbeitung oft gegeben sind. Die hoch reaktive NCO Gruppe birgt u.a. die Gefahr einer Sensibilisierung. Es besteht daher für diese Stoffklasse eine Kennzeichnungspflicht. Die derzeit alternativ verfügbaren RHM, liegen in ihrem Leistungsspektrum z. T. weit hinter den PU basierten zurück und konnten sich daher am Markt nicht behaupten. Ziel ist es, ein reaktives Schmelzklebstoffkonzept auf urethanfreier Basis (bezogen auf die Prepolymere und deren reaktive Endgruppen) zu erarbeiten.

Biobasierte Reaktive Urethanfreie HotMelts, Teilvorhaben 2: Synthese und Funktionalisierung von Polyesterpolyolen und Aufbau von Blockpolymeren

Reaktivschmelzklebstoffe (RHM) aus Polyurethan begegnen uns aufgrund ihrer herausragenden Eigenschaften zunehmend in Anwendungen wie im Verpackungs- und Automobilbereich bis hin zu technischen Textilien (prognostiziertes Marktwachstum 10-20 % auf ca. 100 kt/a). Als Hauptkomponente dient ein feuchtigkeitsvernetzendes PU-Prepolymer, das durch die Reaktion mit der Umgebungsfeuchte aushärtet. Die Hauptrohstoffe für die Herstellung des Prepolymers sind Polyole und Diisocyanate. Damit verbunden ist ein gravierender Nachteil dieser Klebstoffklasse: die Freisetzung gefährlichen Isocyanats (NCO) aus Resten von im Überschuss eingesetzten Monomeren oder infolge der Rückspaltung von Urethangruppen bei erhöhten Temperaturen wie sie bei der Verarbeitung oft gegeben sind. Die hoch reaktive NCO Gruppe birgt u.a. die Gefahr einer Sensibilisierung. Es besteht daher für diese Stoffklasse eine Kennzeichnungspflicht. Die derzeit alternativ verfügbaren RHM, liegen in ihrem Leistungsspektrum z. T. weit hinter den PU basierten zurück und konnten sich daher am Markt nicht behaupten. Ziel ist es, ein reaktives Schmelzklebstoffkonzept auf urethanfreier Basis (bezogen auf die Prepolymere und deren reaktive Endgruppen) zu erarbeiten.

Biobasierte Reaktive Urethanfreie HotMelts

Reaktivschmelzklebstoffe (RHM) aus Polyurethan begegnen uns aufgrund ihrer herausragenden Eigenschaften zunehmend in Anwendungen wie im Verpackungs- und Automobilbereich bis hin zu technischen Textilien (prognostiziertes Marktwachstum 10-20 % auf ca. 100 kt/a). Als Hauptkomponente dient ein feuchtigkeitsvernetzendes PU-Prepolymer, das durch die Reaktion mit der Umgebungsfeuchte aushärtet. Die Hauptrohstoffe für die Herstellung des Prepolymers sind Polyole und Diisocyanate. Damit verbunden ist ein gravierender Nachteil dieser Klebstoffklasse: die Freisetzung gefährlichen Isocyanats (NCO) aus Resten von im Überschuss eingesetzten Monomeren oder infolge der Rückspaltung von Urethangruppen bei erhöhten Temperaturen wie sie bei der Verarbeitung oft gegeben sind. Die hoch reaktive NCO Gruppe birgt u.a. die Gefahr einer Sensibilisierung. Es besteht daher für diese Stoffklasse eine Kennzeichnungspflicht. Die derzeit alternativ verfügbaren RHM, liegen in ihrem Leistungsspektrum z. T. weit hinter den PU basierten zurück und konnten sich daher am Markt nicht behaupten. Ziel ist es, ein reaktives Schmelzklebstoffkonzept auf urethanfreier Basis (bezogen auf die Prepolymere und deren reaktive Endgruppen) zu erarbeiten.

Ressourceneffiziente Nutzung von Über- und Ausschüssen der Textilindustrie durch die regionale Schaffung von Kreisläufen, TP: TEXTIL- UND BEKLEIDUNG

'Grünalgen als Faserstoff der Zukunft?' - Machbarkeitsphase für den Einsatz fädiger Süßwasseralgen als potenzieller Rohstoff für die Textilindustrie

Biobasierte Hybridbeschichtungen für Innenraum- und Funktionstextilien, Teilvorhaben 1: Entwicklung homogener und hochgradig imprägnierbarer Naturfaser-DU-Tapes für technische Faserverbundanwendungen

Das Gesamtziel des Vorhabens BioCoatTex ist die Entwicklung neuartiger Beschichtungen auf Basis biobasierter Ormocere für die nasschemische Ausrüstung von technischen Textilien mit hoher Funktionalität. Erreicht werden soll eine hohe Flexibilität bei der Erzeugung kombinierter intrinsischer Materialeigenschaften wie Steigerung der Abriebbeständigkeit und Faser-Matrix-Haftung sowie spezifischer Eigenschaften wie zum Beispiel Wasser- und Schmutzresistenz oder Flammschutz. Durch die Kombination von technischen Textilien und biogenen Beschichtungen wird es möglich, auch im Techtextilbereich zunehmend unabhängig von fossilen Rohstoffen zu werden und einen entscheidenden Schritt in Richtung vollständiger Kreislaufwirtschaft und CO2-Neutralität zu gehen. Zur Validierung der im Projekt entwickelten Beschichtungen wird jeweils eine Demonstrationsanwendung aus dem Bereich Objekttextilien der Firma Vowalon und Naturfasercomposite der SachsenLeinen GmbH (z.B.für den Mobilitätssektor oder Sportgeräte) entwickelt und erprobt. Die daraus resultierenden Ergebnisse weisen ein hohe Transfermöglichkeit und Übertragbarkeit auf weitere techtextile Anwendungen auf. Die Ausstattung mit den genannten Funktionen soll durch Ausrüstungen mit einem Feststoffgehalt von nur 5 Masse-% erreicht werden. Bei Flammschutzanwendungen werden die Feststoffgehalte Anwendungsbeding höher gewählt und werden im Bereich von ca. 10 Masse-%, liegen. Im Vergleich von bis zu 30 Masse-% Feststoffauflagen bei der klassischen Textilausrüstung kann dadurch zusätzlich zur Substitution fossiler Ausgangswerkstoffe die Ressourceneffizienz gesteigert werden.

Biobasierte Hybridbeschichtungen für Innenraum- und Funktionstextilien

Das Gesamtziel des Vorhabens BioCoatTex ist die Entwicklung neuartiger Beschichtungen auf Basis biobasierter Ormocere für die nasschemische Ausrüstung von technischen Textilien mit hoher Funktionalität. Erreicht werden soll eine hohe Flexibilität bei der Erzeugung kombinierter intrinsischer Materialeigenschaften wie Steigerung der Abriebbeständigkeit und Faser-Matrix-Haftung sowie spezifischer Eigenschaften wie zum Beispiel Wasser- und Schmutzresistenz oder Flammschutz. Durch die Kombination von technischen Textilien und biogenen Beschichtungen wird es möglich, auch im Techtextilbereich zunehmend unabhängig von fossilen Rohstoffen zu werden und einen entscheidenden Schritt in Richtung vollständiger Kreislaufwirtschaft und CO2-Neutralität zu gehen. Zur Validierung der im Projekt entwickelten Beschichtungen wird jeweils eine Demonstrationsanwendung aus dem Bereich Objekttextilien der Firma Vowalon und Naturfasercomposite der SachsenLeinen GmbH (z.B.für den Mobilitätssektor oder Sportgeräte) entwickelt und erprobt. Die daraus resultierenden Ergebnisse weisen ein hohe Transfermöglichkeit und Übertragbarkeit auf weitere techtextile Anwendungen auf. Die Ausstattung mit den genannten Funktionen soll durch Ausrüstungen mit einem Feststoffgehalt von nur 5 Masse-% erreicht werden. Bei Flammschutzanwendungen werden die Feststoffgehalte Anwendungsbeding höher gewählt und werden im Bereich von ca. 10 Masse-%, liegen. Im Vergleich von bis zu 30 Masse-% Feststoffauflagen bei der klassischen Textilausrüstung kann dadurch zusätzlich zur Substitution fossiler Ausgangswerkstoffe die Ressourceneffizienz gesteigert werden.

Garne und Textilien für Reinigungsanwendungen, Teilprojekt 2

Entwicklung von flammhemmenden biobasierten Beschichtungen für technische Textilien

Gesamtziel des Projekts ist es, (teil)biobasierte Polyurethane und -acrylate, die potenziell für die Beschichtung von technischen Textilien geeignet sind, mit der zusätzlichen Funktionalität 'Flammschutz' zu versehen. Dies soll durch Zumischung von flammhemmend wirkenden phosphorhaltigen Cellulosederivaten zur Beschichtungsmatrix erfolgen. Für die Herstellung der biobasierten Matrizes sollen von den involvierten chemischen Industriepartnern bereits bekannte, aber auch neue Systeme auf biogener Rohstoffbasis Verwendung finden bzw. entwickelt werden. Wichtige Meilensteine zum Erreichen des Projektzieles ist die Einstellung eines ausreichend hohen Phosphorylierungsgrades bei der Cellulosederivatisierung sowie die Nutzung von Beschichtungsmatrixpolymeren aus mindestens 60% biogener Quelle. Diese werden con CHT und Covestro speziell für die Applikation auf technischen Textilien angepasst und als marktreife Compounds formuliert. Die Ergebnisverwertung ist mit Produktinnovationen der neuen Beschichtungssysteme in folgenden Einsatzbereichen verknüpft: FR-Sonnenschutztextilien, FR-Gewebe für Heimtextilien und den Automotive-Bereich, sonstige technische Gewebe (TVE Drechsel), FR-Nonwovens im Automotive-Bereich (Tenowo). Die Wirksamkeit der neuen FR-Additive auf nachwachsender Rohstoffbasis sowie die flammhemmenden Eigenschaften des Gesamtverbundes, d.h. Trägertextilien plus FR Biocoat, wird mittels umfangreicher Flammschutzprüfungen untersucht. Am Ende des Projekts stehen Betriebsversuche bei den involvierten Textilern.

1 2 3 4 528 29 30