API src

Found 558 results.

Erforschung der Oekophysiologie der Flechten und der hoeheren Pflanzen (z.B. Halophyten, Kulturpflanzen usw.)

(1) Poleotoleranz von Flechten der Stadt Wuerzburg (Kartierung, S-Gehalt, Pb-Gehalt-Beziehungen zur spezifischen Klimasituation). (2)Temperaturresistenz und photosynthetische Stoffproduktion von Flechten von extremen Standorten (im Bereich heisser Exhalationen auf Hawaii, in der Antarktis, in Australien, in Wuestengebieten). (3) Hitze- und Kaelteresistenz von Sukkulenten atlantischer Inseln. (4) Frostresistenz und ihre Ursachen bei Halophyten der Nordseekueste. (5) Frostresistenz und ihre Ursachen bei verschiedenen Sorten der Weinrebe.

Eignung von ziegelreichen Recycling-Baustoffen für Tragschichten ohne Bindemittel

Der Anteil an Ziegel in einem RC-Baustoff ist nach den TL RC-ToB 95 begrenzt. Die Trennung in hart- und weichgebrannte Ziegel - auch in Mischung mit weiteren Baustoffkomponenten z. B. Mörtel und Putz - sowie auch die Höhe der Grenzwerte sind noch nicht ausreichend abgesichert. Mit dieser Forschungsarbeit soll geklärt werden, inwieweit sich höhere Anteile an Ziegelbruch auf die Qualität einer ToB auswirken. In Laborversuchen werden getrennt die Eigenschaften der hart- und weichgebrannten Ziegel und auch des Mörtels und Putzes im Hinblick auf den Frostwiderstand, die Schlagfestigkeit sowie die Porosität ermittelt. In RC-Gemischen werden die Auswirkungen unterschiedlicher Anteile der Ziegel bzw. des Mörtel/Putzes, insbesondere die Frostempfindlichkeit, das Tragverhalten sowie die Wasserdurchlässigkeit untersucht. Im Rahmen der Arbeit sollen auch die bisherigen praktischen Erfahrungen mit ziegelreichen RC-Baustoffen erfasst werden. Als Ergebnis sind ggf. Vorschläge für modifizierte Anforderungen an die stoffliche Zusammenstellung für RC-Baustoffe zu erarbeiten.

Flexible fossile Kraftwerke für den zukünftigen Energiemarkt durch neue und fortschrittliche Turbinentechnologien - WP4 TUD: Auslegung und Entwicklung eines Heißgasprüfstandes (HTCTR)

Im Rahmen des Projekts wird ein Prüfstand entwickelt und gebaut, mit dessen Hilfe gekühlte Komponenten aus der Brennkammer- und Turbinensektion untersucht werden können. Unter betriebsnahen Bedingungen wird ein Wärmeübergang an der Oberfläche der Proben geschaffen, der es unter Einsatz von Heißgas und Kühlluft erlaubt, thermische Beanspruchungen im Betrieb zu simulieren. Schwerpunkt der Untersuchungen ist dabei eine thermisch-zyklische Beanspruchung der Proben mit dem Forschungsziel, Kühlkonzepte und neue Materialien für die Auslegung und Herstellung von Komponenten weiterzuentwickeln.

Kunststoffverarbeitung/ Bauteilherstellung, TP3.6: Forschung und Entwicklung zur Fertigung funktionsgerechter Bauteile aus Bio-SMC/BMC unter der Verwendung von reststoffbasierten biogenen Rohstoffen

Aerosol-Variabilität und Interaktion mit Umgebungsbedingungen basierend auf der kleinskaligen vertikalen und horizontalen Verteilung bei Messungen in der Arktis (AIDA)

Im Klimasystem der Arktis spielen Aerosolpartikel eine bedeutende Rolle für das Verständnis der schnellen Erwärmung. Durch die niedrige Hintergrundkonzentration sind lokale Neubildungs-Ereignisse eine wichtige Quelle, und können signifikant zu Wolkenkondensationskeimen beitragen. Aufgrund der schweren Erreichbarkeit gibt es insbesondere wenig Messungen zur vertikalen Verteilung von Aerosolpartikeln in der Arktis. Die Aerosol-Konzentration ist stark variabel in Raum und Zeit, und daher schwierig in Modellen abzubilden. Räumliche Verteilung und zeitliche Variabilität auf kleinen Skalen hängen von den Umgebungsbedingungen ab, wie der Stabilität der Atmosphäre, Wolken, Orographie und Oberflächeneigenschaften. Daher untersucht das Projekt AIDA (Aerosol-Variabilität und Interaktion mit Umgebungsbedingungen basierend auf der kleinskaligen vertikalen und horizontalen Verteilung bei Messungen in der Arktis) die kleinskalige Variabilität am Standort Ny-Alesund in Spitzbergen, einem natürlichen Labor von kleinskaligen Kontrasten in den Umgebungsbedingungen, mit einer Kombination von zeitgleichen Fesselballon- und Drohnen-Messungen, die in die bestehenden, kontinuierlich messenden Observatorien in Ny-Alesund und auf dem Zeppelinberg eingebettet werden. Die Messungen sind für die Übergangszeit zwischen Arktischem Dunst mit überwiegend Ferntransport im Frühling und überwiegend lokal gebildeten Aerosolpartikeln im Sommer geplant. Drohne und Fesselballon sind mit ähnlichen Aerosol-Sensoren ausgerüstet: Die wichtigsten Messgeräte sind dabei jeweils zwei parallel betriebene Kondensationskernzähler mit unterschiedlicher unterer Nachweisgrenze im Größenbereich 3-20 nm, um neu gebildete Aerosolpartikel nachzuweisen. Ein leichtes Aerosol-Größenspektrometer kommt zum ersten Mal auf dem Ballon zum Einsatz, um die Aerosol-Größenverteilung zwischen 8 und 300 nm zu messen. Außerdem sind Sensoren für größere Aerosolpartikel implementiert, um die Neubildung von Aerosolpartikeln in Abhängigkeit von bereits existierendem Aerosol und dem Beitrag von Ferntransport zu untersuchen. Temperatur und Feuchte werden mit hoher zeitlicher Auflösung gemessen, um den Einfluss von Stabilität und vertikaler Durchmischung zu charakterisieren. Der dreidimensionale Windvektor wird gemessen, da das lokale Windfeld sehr stark von der lokalen Orographie geprägt ist. Es wird erwartet, dass die kleinskalige Variabilität der thermodynamischen Bedingungen einen signifikanten Einfluss auf die Neubildung und das Wachstum von neu gebildeten Aerosolpartikeln hat. Die Daten der horizontalen und vertikalen Verteilung der Aerosol-Partikel werden anschließend analysiert in Zusammenarbeit mit den Partnern, die komplementäre Mess-Systeme in Ny-Alesund, auf dem Zeppelin-Berg und an anderen arktischen Standorten betreiben. Die Ergebnisse tragen bei zu einem besseren Verständnis der kleinskaligen Verteilung von Aerosolpartikeln, deren Entstehung, Wachstum und vertikalen Transportprozesse.

Nanoskalige Kohlenstoffmembranen für Trennaufgaben zur Umsetzung einer schadstofffreien Ressourceneffizienz, NanoKoM - Nanoskalige Kohlenstoffmembranen für Trennaufgaben zur Umsetzung einer schadstofffreien Ressourceneffizienz

Multikomponentige äquiatomare Oxide als Hochleistungsmaterialien für zukünftige Wärmedämmschichten

Multikomponentige äquiatomare Oxide als Hochleistungsmaterialien für zukünftige Wärmedämmschichten, MEO-TBCs - Multikomponentige äquiatomare Oxide als Hochleistungsmaterialien für zukünftige Wärmedämmschichten

Entwicklung eines Granulat-Bindersystemes aus Borosilikatglas für eine Glas-Spritzgusstechnologie und energieeffiziente Herstellung von geometrisch komplexen und transparenten Glasbauteilen, Teilvorhaben: Entwicklung des Feedstocks

Entwicklung eines Granulat-Bindersystemes aus Borosilikatglas für eine Glas-Spritzgusstechnologie und energieeffiziente Herstellung von geometrisch komplexen und transparenten Glasbauteilen, Teilvorhaben: Entwicklung des Entbinderungs- und Sinterprozesses

1 2 3 4 554 55 56