API src

Found 1557 results.

Similar terms

s/textilgewerbe/Textilgewebe/gi

Wirtschaftsverkehr in Berlin

In Berlin und allen deutschen Städten leistet der Wirtschaftsverkehr als Summe von Güterverkehr und Personenwirtschaftsverkehr einen maßgeblichen und unverzichtbaren Beitrag zum Funktionieren der Stadt und der Region. Der Wirtschaftsverkehr nutzt alle verfügbaren Verkehrsträger unserer Stadt. Güter werden auf den Berliner Wasserstraßen, der Schiene, der Straße, auf dem Luftweg und durch Rohrleitungen bewegt. Die Leistungen des Wirtschaftsverkehrs bilden die Grundlage für Arbeit, Konsum und Freizeitverhalten der Berliner Bevölkerung sowie der Besucherinnen und Besucher Berlins, beispielsweise durch: die Lieferung von Waren und Gütern für Handel und Industrie, dabei allein an mehr als 1.100 Supermärkte in Berlin die Versorgung der rund 800 Berliner Hotels und anderen Beherbergungsstätten sowie der ca. 9.400 gastronomischen Betriebe (Stand Februar 2020) die Zustellung von täglich durchschnittlich mehr als 400.000 Paketen durch geschätzt 2.500 Kurier-, Express- und Paketdienste (KEP)-Zustellfahrzeuge die Versorgung der Baustellen und der Transport des Bodenaushubs die Entsorgung von Abfällen und Recyclingmaterialien in Berlin, davon im Jahr 2019 rund 798.000 Tonnen Hausmüll und rund 103.000 Tonnen Bioabfall den Personenwirtschaftsverkehr der Beschäftigten, beispielsweise in rund 41.500 Berliner Unternehmen (2018) im Bereich „Erbringung von freiberuflichen, wissenschaftlichen und technischen Dienstleistungen” Insbesondere der Wirtschaftsverkehr auf der Straße hat in den letzten Jahren stark an Umfang gewonnen. Lebensmittel, Textilien, Möbel, Maschinenteile, Haushaltsabfälle oder Bauelemente für Häuser – es gibt kaum ein Gut, welches nicht auf den Berliner Straßen transportiert wird. Gerade hier zeigt sich deutlich das Spannungsfeld, in dem sich der Wirtschaftsverkehr bewegt. Denn neben dem unverzichtbaren Beitrag zum Funktionieren der Stadt und der Region, verursacht der Wirtschaftsverkehr auch zahlreiche negative Effekte. So erzeugt einen großen Teil der Lärm- und Luftschadstoffbelastungen, verursacht einen hohen Instandhaltungsaufwand der Infrastruktur, beansprucht Flächen im fließenden und ruhenden Verkehr und stellt einen Schwerpunkt bei der Verkehrssicherheitsarbeit dar. Vor dem Hintergrund der verkehrsbedingten Umweltbelastungen und dem Klimawandel, der Luftreinhalteplanung und der Lärmaktionsplanung besteht Handlungsdruck im Wirtschaftsverkehr. Es ist die Aufgabe der öffentlichen Hand, die entsprechenden Ziele zu definieren, Rahmenbedingungen zu setzen und unterschiedliche Ansprüche abzuwägen, um einen funktionierenden, aber auch umwelt- und stadtverträglichen Wirtschaftsverkehr in Berlin zu garantieren. Planerische Grundlage Berlins ist das Integrierte Wirtschaftsverkehrskonzept (IWVK), welches als nachgeordnetes Planwerk den Stadtentwicklungsplan Mobilität und Verkehr für den kurz- und mittelfristigen Planungshorizont konkretisiert und entsprechende Maßnahmen und Konzepte formuliert. Eine neue Version dieses Planwerks befindet sich in der Finalisierung. Des Weiteren bildet das Zusammenwirken und ein intensiver Informationsaustausch zwischen Verwaltung(en), Kammern, Verbänden, Unternehmen, den Verladern, Entsorgern, den Netzbetreibern usw. eine wichtige Grundlage der Wirtschaftsverkehrsplanung. In Berlin wird dies bereits seit Langem gelebt. Eine besondere Rolle nimmt auch der Dialog mit dem Land Brandenburg ein, da gerade hier vielfältige Verknüpfungen (Infrastrukturplanung, Standorte, Verbände, Kammern, gemeinsame Clusterstrategie usw.) bestehen. Mobilitätsgesetz: Wirtschaftsverkehr und Neue Mobilität Der Wirtschaftsverkehr soll stadtverträglich organisiert werden und gleichzeitig die Versorgung der Berlinerinnen und Berliner sicherstellen. Um die Verwirklichung beider Ziele auf eine rechtliche Grundlage zu stellen, hat der Berliner Senat die Erweiterung des Mobilitätsgesetzes vorgelegt. Weitere Informationen

DDT and DDE Konzentrationen im Blut-Serum durch Pestizid belastete Wohnräume

Ziel: DDT wurde früher häufig als Insektizid auch im Wohnbereich eingesetzt. Messungen zeigten, dass auch noch lange nach dem DDT Verbot (15.09.1989) DDT Konzentrationen bis 90 mg/kg Hausstaub gemessen werden können. Handlungsbedarf besteht laut Umweltbundesamt bereits ab 4 mg DDT/kg. Da die Anreicherung bzw. die Probenahme des Hausstaubes in den meisten Fällen mit einfachen Staubsaugern durchgeführt wurden, liegen keine Kenntnisse über die Größenverteilung des gesammelten Staubes vor (z.B. über die Menge der einatembaren Staubfraktion). DDT könnte aber zusätzlich auch perkutan aus Kleidungsstücken, die in den übernommenen Einbauschränken aufbewahrt und kontaminiert werden, resorbiert werden. Eine Abschätzung der inneren Belastung allein über die DDT Konzentrationen in den gesammelten Staubfraktionen ist daher nicht möglich. Methodik: Im Serum von 16 Personen, die in früheren US Wohnungen mit angeblich erhöhten DDT Belastungen leben, führten wir ein human-biomonitoring durch. Wir bestimmten im Serum der Betroffenen den DDT Metaboliten 4,4 'DDE. Ergebnisse: Im Mittel lagen die 4,4 DDE Konzentrationen im Serum mit 1,62 my/l in der Größenordnung nicht belasteter Personen (1,82 my/l).

Auswirkungen von Wasserstoff als Brennstoff auf die Anlagenbetriebsweise und Produktqualität in industriellen Prozessen am Beispiel der Textilveredlung, Teilvorhaben: Umbau d. i. Technologiezentrum bestehenden Spannrahmens auf die n Wasserstoff-Technologie und die Durchführung von Versuchen

Zu den übergeordneten Zielen des Projektvorhabens gehört die Reduzierung des CO2-Fußabdrucks der in Europa erzeugten oder nach Europa importierten Textilien. Die hier geplante Forschung und Entwicklung kann den CO2-Fußabdruck im entscheidenden Maße beeinflussen. Gleichzeitig kann mit der Textilbranche die zweitgrößte Konsumgüterbranche der Welt einen wesentlichen Beitrag zum Klimaschutz leisten. Dazu soll im Rahmen des Forschungsvorhabens ein Spannrahmentrockner für die Textilveredlung entwickelt werden, der bei Bereitstellung unterschiedlicher Erdgas-Wasserstoff-Gemische - bis hin zu 100% Wasserstoff in der Brenngasversorgung - zuverlässig arbeitet und Produkte mit hoher Qualität herstellt. Im Zentrum des Vorhabens steht mit dem Spannrahmentrockner eine der am häufigsten in der Textilveredlung zum Einsatz kommende Thermomaschine. Hierbei handelt es sich um einen Konvektionstrockner, der nasse Textilien im Anschluss an die Vorbehandlung, Farbgebung, Ausrüstung oder Beschichtung durch Anströmen mit heißer Luft aus einem in der Regel erdgasbetriebenem Brenner trocknet (etwa 150 Grad C Betriebstemperatur) oder aber auch trockene Ware und Spezialausrüstungen (bei Temperaturen größer als 170 Grad C) fixiert oder kondensiert. Die installierte Heizleistung eines durchschnittlichen Spannrahmens von 2 bis 3 MW und die mittlere benötigte Wärmemenge von 3.600 kJ pro kg Ware verdeutlichen den hohen Energiebedarf einer solchen Thermomaschine. Während des Betriebes steht die textile Ware in unmittelbarem Kontakt mit dem Abgas des Brenners.

Auswirkungen von Wasserstoff als Brennstoff auf die Anlagenbetriebsweise und Produktqualität in industriellen Prozessen am Beispiel der Textilveredlung

Zu den übergeordneten Zielen des Projektvorhabens gehört die Reduzierung des CO2-Fußabdrucks der in Europa erzeugten oder nach Europa importierten Textilien. Die hier geplante Forschung und Entwicklung kann den CO2-Fußabdruck im entscheidenden Maße beeinflussen. Gleichzeitig kann mit der Textilbranche die zweitgrößte Konsumgüterbranche der Welt einen wesentlichen Beitrag zum Klimaschutz leisten. Dazu soll im Rahmen des Forschungsvorhabens ein Spannrahmentrockner für die Textilveredlung entwickelt werden, der bei Bereitstellung unterschiedlicher Erdgas-Wasserstoff-Gemische - bis hin zu 100% Wasserstoff in der Brenngasversorgung - zuverlässig arbeitet und Produkte mit hoher Qualität herstellt. Im Zentrum des Vorhabens steht mit dem Spannrahmentrockner eine der am häufigsten in der Textilveredlung zum Einsatz kommende Thermomaschine. Hierbei handelt es sich um einen Konvektionstrockner, der nasse Textilien im Anschluss an die Vorbehandlung, Farbgebung, Ausrüstung oder Beschichtung durch Anströmen mit heißer Luft aus einem in der Regel erdgasbetriebenem Brenner trocknet (etwa 150 Grad C Betriebstemperatur) oder aber auch trockene Ware und Spezialausrüstungen (bei Temperaturen größer als 170 Grad C) fixiert oder kondensiert. Die installierte Heizleistung eines durchschnittlichen Spannrahmens von 2 bis 3 MW und die mittlere benötigte Wärmemenge von 3.600 kJ pro kg Ware verdeutlichen den hohen Energiebedarf einer solchen Thermomaschine. Während des Betriebes steht die textile Ware in unmittelbarem Kontakt mit dem Abgas des Brenners.

Untersuchung ökotoxischer Effekte von faser- und plättchenförmigen neuartigen Materialien für die Ableitung angepasster Prüfstrategien

Faser- und plättchenförmige neuartige Materialien wie beispielswiese Kohlenstoffnanoröhrchen, Graphene oder MXene weisen außergewöhnliche mechanische, elektronische, optische und chemische Eigenschaften auf. Sie werden daher für eine Vielzahl von Anwendungen untersucht. Diese umfassen beispielsweise optoelektronische Anwendungen (z.B. Solarzellen, Leuchtdioden), Sensortechnik, Verbundmaterialien (z.B. für elektrische Leitfähigkeit, EMV-Abschirmung), Energiespeicherung, Katalysatoren oder Textilien (z.B. für elektrische Leitfähigkeit, Flammschutz). Faser- und plättchenförmige neuartige Materialien können aufgrund ihrer Eigenschaften methodische Herausforderungen für die regulative Risikobewertung gemäß EU-Chemikalienrecht mit sich bringen. Welche Mechanismen zur ökotoxischen Wirkung dieser Materialien beitragen, ist wenig untersucht. Zudem besteht die Besorgnis, dass mögliche ökotoxische Wirkungen der Materialien über die klassischen Methoden nicht ausreichend aufgeklärt werden können. Somit besteht der Bedarf geeignete Prüfstrategien zu entwickeln, die es ermöglichen relevante Mechanismen und (sub)letale Effekte zu identifizieren, die eine spezifische Einschätzung des ökotoxischen Potentials faser- und plättchenförmiger neuartiger Materialien erlauben. In dem Vorhaben sollen daher besondere Wirkmechanismen und relevante (sub)letale Effekte dieser Materialien recherchiert werden. Davon ausgehend soll abgeleitet werden, welche Prüfsysteme zum Einsatz kommen müssen, um spezifische Aussagen zur Ökotoxikologie dieser Materialien vornehmen zu können. Ausgewählte Prüfsysteme sollen exemplarisch anhand von ausgewählten faser- und plättchenförmigen Materialien erprobt und adaptiert werden. Auf diese Weise sollen Empfehlungen abgeleitet werden, wie nicht-klassische Effekte im Rahmen der Umweltrisikobewertung solcher Materialien berücksichtigt werden könnten und welche weiteren Schritte vorgenommen werden müssten.

In situ Bestimmung der Zug-Dehnungseigenschaften unter variierten klimatischen Bedingungen zur Charakterisierung von Bahnenwaren mit biobasierten Anteilen

Textile Laundry Sustainability - Nachhaltigkeit in der Wäscherei und Textilreinigung: Entwicklung von Nachhaltigkeitsstandards für die Branche Textilreinigung und Wäschereien

FH-Kooperativ 1-2023: Nachhaltige Strategien für die Wäschehygiene (NASH)

KI-gestützte sensorbasierte Sortierung textiler Bekleidungsabfälle zur automatisierten Bewertung des Zustands und der Tragbarkeit, TP: Robotik und Pneumatik

Transregio (TRR) 280: Konstruktionsstrategien für materialminimierte Carbonbetonstrukturen - Grundlagen für eine neue Art zu bauen; Transregio (TRR 280): Design Strategies for Material-Minimised Carbon Reinforced Concrete Structures - Principles of a New Approach to Construction, Teilprojekt B02: Untersuchung neuer Material- und Technologieansätze zur kontinuierlichen Inline-Umformung und -Konsolidierung textiler Bewehrungen

Bislang werden Textilbewehrungen vor der Bauteilherstellung getränkt und ausgehärtet. Diese relativ steifen Halbzeuge eignen sich nicht zur Herstellung komplexer Bauteile auf Basis der neuen kontinuierlichen Fertigungsprozesse wie 3D-Betondruck und Betonextrusion, da ein Großteils der Formflexibilität durch die etablierte Offline-Konsolidierung verloren geht. TP B02 (Gries) untersucht daher die zeitliche Verschiebung des Umform- und Konsolidierungsschrittes mittels Prepregsystemen in den Betonageprozess. Neben bekannten Aushärtemechanismen wie z. B. Wärme oder UV-Strahlung werden neue Ansätze wie bspw. die Aktivierung über die Alkalität des Betons, über Mikrowellen oder mittels Induktion für eine Inline-Fertigung von Carbonbeton erforscht.

1 2 3 4 5154 155 156