API src

Found 332 results.

Related terms

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten

Das Schwerpunktprogramm ist multidisziplinär aufgebaut mit den interdisziplinär verwobenen Schwerpunkten:-- Physik und Chemie von Ozean, Eis und Atmosphäre -- Geowissenschaften -- Biowissenschaften. Die Polarregionen sind von großer Bedeutung für moderne Umweltforschung sowie für die Beurteilung von zukünftigen Klimaänderungen und ihren Folgen. Da die Reaktionen in den Polargebieten schneller erfolgen als in temperierten oder tropischen Zonen, gelten sie als Schlüsselgebiete der Erde. Dies gilt auch für die Lithosphärenforschung sowie für die Erforschung von globalen Klimaereignissen, Ozeanen und der Ökologie. Zudem beeinflussen sie das globale Wettergeschehen und den Wärmehaushalt. Während der letzten 45 Millionen Jahre ist Antarktika durch die Plattentektonik klimatisch und ozeanografisch isoliert worden. Der daraus resultierende Klimaeinfluss schuf den antarktischen Zirkumpolarstrom und die Vereisung beider Pole. Dieser Zirkumpolarstrom bildet das größte Zirkulationssystem der Erde. Er beeinflusst die Bildung von antarktischem Tiefenwasser und ist die Heimat für produktive Meereslebensgemeinschaften, die sich an die Extrembedingungen angepasst haben. Im Weddell- und Rossmeer schieben sich die Schelfeise hunderte Kilometer in das Meer hinaus, wobei die physikalischen und biologischen Prozesse unter ihnen unerforscht sind. Das Wasser unter dem Schelfeis besitzt hohe Dichten und fließt den Hang hinunter, um sich in die Tiefsee zu ergießen, wo es wiederum alle Weltmeere durchströmt. Die natürlichen Schwankungen des Erdklimas sind in marinen Sedimenten und in Eiskernen Grönlands und Antarktikas gespeichert. Überraschende Ergebnisse deutscher Forscher zeigten, dass Klimaumschwünge in Zeitskalen von nur Jahren oder Dekaden erfolgten. Ein anderer Aspekt der Klimaforschung betrachtet die Abnahme des polaren Ozons. Kontinuierliche Messungen belegen, dass die Ozonabnahme einhergeht mit einer Zunahme des schädlichen UV-B. Bedingt durch ihre Geschichte und Lage haben sich gerade an den Polen spezielle Habitate ausgebildet, die besonders empfindlich auf solche Störungen reagieren. Deshalb können Klimaänderungen und ihre Auswirkungen hier eher erkannt werden als in anderen Ökosystemen. Zusätzlich stellt die Antarktis mit ihren Organismen einen wichtigen Anteil der Biodiversität. Polarforschung muss deshalb eine Sonderrolle zukommen bei Themen wie z.B. Kontinententstehung und -zerfall, Klimaarchiv und Sensitivität gegenüber Umweltveränderungen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Interhemisphärische Konkurrenz AtlantischerTiefenwässer seit der Mittel Pleistozänen Klimakrise (ODP 1063 versus ODP 1094/1090)

Nach Pena und Goldstein (2014) und Dausmann et al. (2017) ist die grundlegende Änderung der glazial-interglazialen Periodizität nach der Mittelpleistozänen - Klimakrise (MPT) durch eine erhebliche Abnahme der thermohalinen Zirkulation gekennzeichnet. Diese wurde mittels Nd-Isotopen Analysen mariner Sedimente nachgewiesen. Darauffolgend tritt die Reduktion der Tiefenwasserbildung während der Eiszeiten stetig wieder auf. Die MPT markiert eindeutig einen Wechsel von geringen Unterschieden im Tiefenwasser EpsilonNd (143Nd/144Nd - Verhältnis) zwischen Kaltzeiten und Warmzeiten. In den untersuchten ODP Kernen 1088/90 tritt diese Änderung in Wassertiefen von 2082 m und 3702 m auf. Weitere Studien im Nordatlantik bestätigen eine systematische Warmzeit - Kaltzeit Zyklizität der Nd-Isotopie, die einen Wettbewerb zwischen stärker radiogenen südlichen Wassermassen und weniger radiogenen nördlichen Wassermassen widerspiegelt. Hier definieren wir delta Epsilon als die Sensitivität von Wassermassen gegenüber der Veränderung der Nd-Isotopie entlang der Fließstrecke, d. h. den interhemisphärischen Gradienten pro Breitengrad. Die Nord-Süd-EpsilonNd-Differenz pro 10 Grad Breitengrad (delta Epsilon) ändert sich im Laufe der Zeit mit einer höheren Sensitivität in den Warmzeiten im Vergleich zu den Kaltzeiten. Bei bekannten Störungen der Nordatlantik-Zirkulation während des Heinrich Event 1 halbiert sich gar die Nd-Sensitivität im Vergleich zu Phasen starker Tiefenwasserbildung. Folglich verschwindet die Fähigkeit von EpsilonNd, die Wassermassenmischung zu verfolgen. Die Sensitivität nimmt dagegen in warmen Klimaphasen mit starker Tiefenzirkulation zu. Um Änderungen in der Wassermassenherkunft und der Stärke des Tiefenzirkulation durch kombinierte Untersuchungen von EpsilonNd und zum Beispiel delta 13C vollständig erfassen zu können, sind sowohl der ortsspezifische EpsilonNd Wert als auch der interhemisphärische Gradient oder die Nd-Sensitivität (delta Epsilon) erforderlich. Erste hochauflösende und bis zu 800 ka lange Nd-Isotopendatensätze zeigen die Dynamik der interhemisphärischen Nd-Sensitivitätsänderungen, für die es derzeit keine vergleichbaren Analysen im Südatlantik gibt. Ziel ist es daher, einerseits die Analysetechnik zu verbessern, um dann eine 1 Ma überspannende Zeitreihe der Nd-Isotopie im Südatlantik, südlich der Polarfront, zu generieren. Dies ermöglicht die Einflüsse von Wassermassen südlicher Herkunft zu quantifizieren. Wir haben ODP 1094 für diese Studie ausgewählt, da es eine direkte Verbindung zu Zirkumpolaren Wassermassen gibt und hohe Sedimentationsraten bestehen, die eine zeitliche Auflösung von Jahrtausenden ermöglicht. Alternativ werden wir den ODP-Kern 1090 weiter nördlich ergänzen. Wir planen eine große Anzahl von Nd-Analysen über die Projektdauer von zwei Jahren. Im dritten Jahr (Folgeantrag) sollen die Beobachtungen verfeinert werden, um die Auswirkungen der sich ändernden Sensitivität für die Entkopplung von Ozeanzirkulation und globalem

Forschergruppe (FOR) 1740: Ein neuer Ansatz für verbesserte Abschätzungen des atlantischen Frischwasserhaushalts und von Frischwassertransporten als Teil des globalen Wasserkreislaufs, Variation of the fresh water in the western Nordic Seas

The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.

Rekonstruktion des marinen Karbonatsystems während des letzten glazial-interglazialen Überganges aus Bor-Isotopen und -Konzentrationen Foraminiferen.

Störungen des Kohlenstoffkreislaufs, sowohl natürlichen als auch anthropogenen Ursprungs, führen zu globale Erwärmung, Ozeanversauerung (OA) und Sauerstoffzehrung des Tiefenwassers. Natürliche Störungen des Kohlenstoffkreislaufs sind als Hauptursache von mindestens 4 von 5 Massensterben in der Erdgeschichte identifiziert wurden (z.B. Hönisch et al, 2009, Bijma et al.., 2013).Anthropogene Aktivitäten setzten CO2 zehnmal schneller frei als jedes andere Ereignis in den letzten 65 Mio. Jahren - vielleicht sogar während der letzten 300 Mio Jahren. Dies macht den heutigen CO2 Ausstoß zu einer der größten gesellschaftlichen Herausforderungen. Um die Auswirkungen der anthropogenen Störungen vorhersagen zu können, ist es zwingend erforderlich, die natürlichen Speicher und Dynamik des Kohlenstoffsystems zu verstehen. Dies erfordert die genaue Rekonstruktion der marinen Karbonatchemie für Zeiträume mit natürlichen Änderungen. In diesem Projekt wollen wir Veränderlichkeit am Übergang Glazial/Interglazial untersuchen weil die Änderungen der Karbonatchemie in der gleichen Größenordnung wie heute lagen. Da das Reservoir an anorganischem Kohlenstoff im Ozean ungefähr 60 mal größer ist als das der Atmosphäre, sind Rekonstruktionen der Veränderungen der Kohlenstoffsenke/-speicherung in der Tiefsee ein Schlüssel, um die glazialen/interglazialen Schwankungen im atmosphärischen CO2 - wie sie in Eisbohrkernen beobachtet werden - zu erklären. Prozesse im Südozean, wo der Großteil des Tiefenwassers ventiliert wird, spielen hierbei vermutlich eine zentrale Rolle. Man vermutet, dass der träge glaziale Süd Ozean mehr Kohlenstoff einlagern konnte, die Biologische Pumpe effektiver war und dass eine höhere Wassermassen-Stratifizierung das Entweichen von CO2 in die Atmosphäre verringert hat. Nach dem glazialen Maximum wird mit dem Rückzug des Meereises die Tiefsee Kohlenstoff - Pumpe wieder mit der Atmosphäre verbunden und führt zu einer erhöhten CO2-Freisetzung. Bislang ist dies, wenn auch von Indizienbeweisen unterstützt, nur eine Hypothese, zum Beweis bedarf es der Rekonstruktionen der glazialen/interglazialen variierenden Karbonatchemie. Dies ist das übergreifende Ziel unseres Antrags. Auf dem Weg zur Rekonstruktion des glazialen/interglazialen Kohlenstoffpools liegen 3 Zwischenziele: 1) Rekonstruktion von Oberflächenwasser-Tiefsee- CO2-Gradienten, glaziale Kohlenstoffspeicherung und deglaziale Entgasung mittels Bor-Isotopen und B/Ca fossiler Foraminiferen als Hauptvariablen. 2) Erstellen der ersten Kalibrationen von Bor-Isotopen und B/Ca Ratio für Cibicides wuellerstorfi (Tiefseeforaminifere) unter in-situ Druck. 3) Entwicklung von analytischen Methoden, welche die Analyse von einzelnen Foraminiferen Schalen erlauben.

Durchlässigkeits- und Fluxmessungen in porösen Aquifern

Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.

Versalzung im oberflächennahen Wasserleiter der Marschen und Niederungen

Grundwasserversalzungen beeinträchtigen in weiten Bereichen der schleswig-holsteinischen Westküste die Beschaffenheit der oberflächennahen Wasserleiter. Ursächlich hierfür sind natürliche Prozesse, insbesondere das landwärtige Eindringen von Meerwasser sowie das Aufsteigen salziger Tiefenwässer infolge hydraulischer Druckentlastung. Die Karte zeigt die überwiegend versalzenen Bereiche (rot) und die überwiegend nicht versalzenen Bereiche (blau) in den Marschen und Niederungen der Westküste.

Fischfauna 2022

Gewässer und Fischgemeinschaften Berlins Gewässerlandschaft wurde im zweiten, dem sog. Brandenburger Stadium der Weichselkaltzeit geformt, welches vor etwa 10.300 Jahren endete. Das Berliner Urstromtal ist Teil des Glogau-Baruther Urstromtals, welches sich entlang der weichselzeitlichen Endmoränen des Brandenburger Stadiums erstreckt. Die Gewässerlandschaft Berlins ist in die norddeutsche Tiefebene eingebettet und wird durch die Flüsse Spree und Havel geprägt, die zusammen mit ihren seenartigen Erweiterungen annähernd zwei Drittel der insgesamt 5.952 ha (6,67 % der Stadtfläche) umfassenden Berliner Gewässerfläche bilden. Dahme und Spree fließen von Südosten in das Berliner Urstromtal und durchfließen das Stadtgebiet von Ost nach West auf einer Länge von 16,4 km bzw. 45,1 km. Die Havel tritt von Norden in das Berliner Urstromtal ein und durchfließt es von Nord nach Süd auf 27,1 km Länge. Die seenartige Erweiterung der Berliner Unterhavel ist mit 1.175 ha Fläche das größte Gewässer der Stadt. Neben den das Stadtbild prägenden Flüssen und Kanälen liegen insgesamt 58 Seen >1 ha zumindest teilweise auf Berliner Stadtgebiet. Unter diesen größeren Seen dominieren die durchflossenen, die sog. Flussseen, von denen der Große Müggelsee mit 766 ha Wasserfläche der größte ist. Der einzige größere, überwiegend durch Grundwasser gespeiste Landsee ist der im Südwesten Berlins auf der Grenze zu Brandenburg gelegene Groß-Glienicker See mit 667 ha. Zahlenmäßig dominieren kleinere und Kleinstgewässer. Berlin verfügt über eine Vielzahl von Teichen, Weihern, Tümpeln, Abgrabungsgewässern und künstlichen Regenrückhaltebecken, von denen insgesamt 388 registriert sind. Hinzu kommen 316 Ableiter und Gräben die – zum Teil verrohrt – eine Gesamtlänge von >390 km haben. Die Bewirtschaftung und Unterhaltung dieser stehenden und fließenden Klein- und Kleinstgewässer erfolgt überwiegend durch die Stadtbezirke. Die größeren Gewässer – Fließgewässer mit einem Einzugsgebiet >10 km 2 und Seen mit einer Fläche >50 ha – sind berichtspflichtig nach Europäischer Wasserrahmenrichtlinie (WRRL). Für diese Gewässer ist im Turnus von sechs Jahren der ökologische Zustand bzw. das ökologische Potenzial an die Europäische Kommission zu melden und sind Maßnahmen zu ergreifen, einen guten ökologischen Zustand zu erreichen. Infolgedessen konzentrieren sich gegenwärtig viele Arbeiten und Untersuchungen auf dieses reduzierte Gewässernetz der berichtspflichtigen Seen und Fließgewässer Berlins. Rund 200 km der Berliner Fließgewässer und zehn Seen unterliegen der Überwachung gemäß WRRL. Ein großer Teil der Fließgewässer sind künstliche Gewässer, Kanäle und Gräben. Aufgrund der Vielzahl durchflossener Seen dominiert auch bei den natürlichen Fließgewässertypen der Typ 21: seeausflussgeprägtes Fließgewässer. Daneben entfallen substantielle Anteile auf die Fließgewässertypen 15: sandgeprägter Tieflandfluss, 14: sandgeprägter Tieflandbach und 11: organisch geprägter Bach. Kleinere Abschnitte im Mündungsbereich der Nebenflüsse sind als Typ 19: Niederungsgewässer klassifiziert und die Panke vom Verteilerbauwerk (Abzweig des Nordgrabens) bis etwa zur Pankstraße als Typ 12: kiesgeprägter Tieflandbach. Innerhalb eines Fließgewässers sind auch Typenwechsel möglich, analog zur natürlichen Längszonierung von Flüssen. So wechselt beispielsweise die Spree etwa in Höhe der Elsenbrücke (Fluss-km 22,05) den Typ vom seeausfluss- zum sandgeprägten Tieflandfluss (SenUMVK 2021). Bei den berichtspflichtigen Seen handelt es sich überwiegend um Flussseen mit großen Einzugsgebieten vom Typ 10 (geschichtet, Aufenthaltszeit des Wassers >30 Tage, Großer Wannsee und Tegeler See), 11 (ungeschichtet, Aufenthaltszeit >30 Tage, 3 Seen) und 12 (ungeschichtet, Aufenthaltszeit 3 – 30 Tage, 4 Seen). Der nicht durchflossene Groß-Glienicker Sees ist im Sommer ebenfalls stabil geschichtet, d. h. seine warme Oberflächenwasserschicht mischt sich nicht mit dem darunterliegenden kalten Tiefenwasser und ist als See vom Typ 10 klassifiziert. Im Gegensatz zu den durchflossenen Seen hat sein Wasser eine theoretische Aufenthaltszeit von sieben Jahren (SenUMVK 2021). Im gegenwärtigen morphologischen Zustand sind sich die einzelnen Fließgewässertypen allerdings deutlich ähnlicher als es die Klassifizierung vermuten lässt. Zudem lässt das reduzierte Gewässernetz der WRRL die Vielzahl der Kleingewässer unberücksichtigt. Aus diesem Grund wurde hier analog zu früheren Übersichten zur Berliner Fischfauna eine etwas abweichende, fischfaunistisch aber durchaus relevante Typisierung der Gewässer vorgenommen. Entsprechend ihrer Fläche, Morphologie, Vernetzung, Wasserversorgung und Besiedelungsmöglichkeiten für Fische wurden Fließgewässer, Kanäle, Gräben, Flussseen, Landseen und stehende Kleingewässer (<1 ha) unterschieden. Nachfolgend werden die wichtigsten Gewässertypen kurz charakterisiert. Spree, Havel und Dahme sind die drei großen, schiffbaren Fließgewässer Berlins, mit zusammen 88,6 km Lauflänge innerhalb der Stadtgrenzen. Die wichtigsten Nebenflüsse sind Fredersdorfer Mühlenfließ (3 km in Berlin), Neuenhagener Mühlenfließ (Erpe, 4,1 km), Wuhle (15,7 km), Panke (17,6 km) und das in den Tegeler See entwässernde Tegeler Fließ (11,2 km). Die Berliner Fließgewässer sind staureguliert. So werden die Wasserspiegellagen von Havel und unterer Spree durch die Staustufe Brandenburg bestimmt. Bei Niedrigwasser ist diese Gewässerfläche beinahe ausnivelliert und die Wasserspiegeldifferenz beträgt zwischen Spandau und Brandenburg nur 0,16 m (Gefälle 0,002‰). Bei Mittelwasser beträgt das Wasserspiegelgefälle bis Brandenburg 0,006‰ (0,35 m Differenz) und bei Hochwasser 0,014‰ (0,83 m). Der Mühlendamm und die Schleuse Kleinmachnow im Teltowkanal bestimmen die Wasserstände in der oberen Spree im Stadtgebiet und in der Dahme, wo die Wasserspiegellagen ähnlich ausnivelliert sind. Selbst im weiteren Verlauf der Spree bis zum Unterspreewald überwindet die Spree nur einen Gesamt-Höhenunterschied von 14 m (0,08‰). Die Stadtspree, der mittlere Abschnitt der Spree in Berlin, wird durch die Staustufe Charlottenburg reguliert. Dementsprechend gering sind die mittleren Fließgeschwindigkeiten, die in den Hauptfließgewässern <10 cm/s betragen und nur bei höheren Abflüssen im Hochwasserfall über 0,5 m/s ansteigen. In den kleineren Nebenflüssen treten lokal – insbesondere an ehemaligen Wehrstandorten – auch höhere Fließgeschwindigkeiten auf. Fischfaunistisch sind die Berliner Hauptfließgewässer dem Unterlauf der Flüsse, d. h. der Bleiregion zuzuordnen, mit karpfenartigen Fischen – insbesondere Güster, Blei, Ukelei und Plötze – als Hauptfischarten. Sie zählen zu den artenreichen Gewässertypen im Stadtgebiet, wenn auch die aktuell festgestellte durchschnittliche Fischartenzahl (16) deutliche Defizite aufzeigt. Insgesamt wurden 38 der in Berlin vorkommenden Fischarten auch in diesem Gewässertyp zumindest als Einzelexemplare nachgewiesen. Kanäle sind künstlich angelegte Verbindungsgewässer. Aus diesem Grund haben sie einen besonders gestreckten Verlauf mit wenigen Untiefen und Ausbuchtungen. Die Ufer sind vergleichsweise steil, befestigt und monoton, d. h. über lange Strecken variieren sie nur sehr wenig in ihrer Breite, Tiefe oder Gestaltung. Berlins schiffbare Kanäle haben 80,1 km Gesamtlänge. Sie sind fast ausschließlich Bundeswasserstraßen in der Verwaltung des Wasserstraßen- und Schifffahrtsamts Berlin. Die Berliner Kanäle dienen darüber hinaus in besonderem Maße als Vorflut für gereinigte Abwässer sowie für die Überläufe der Mischwasserkanalisation. So leiten beispielsweise gleich drei Klärwerke – Stahnsdorf, Ruhleben (nur April-September; soll nach Fertigstellung der UV-Desinfektionsanlage eingestellt werden) und Waßmannsdorf – im Jahr 2022 täglich rund 758.000 m 3 , über das Jahr insgesamt 277 Mio. m 3 gereinigtes Abwasser in den Teltowkanal ein (SenStadt 2022). Der Landwehrkanal nimmt insgesamt 72 Mischwasser-Einleitungen der Berliner Wasserbetriebe auf (Abgeordnetenhaus Berlin 2020), aus denen bei Starkregen, wenn die Pumpwerke das anfallende Wasser nicht mehr bewältigen können, Schmutz- und Regenwasser (Mischungsverhältnis ca. 1:9) ungereinigt in das Gewässer abfließen. Von 2015 bis 2019 erfolgten jährlich 3 bis 33 Mischwassereinleitungen, bei denen insgesamt zwischen 550.000 m³ (2015) und 3,419 Mio. m 3 Mischwasser in den Landwehrkanal gelangten (Abgeordnetenhaus Berlin 2020). Aufgrund der monotonen Gewässerstrukturen und vergleichsweise hohen Belastungen werden die Kanäle vor allem von anspruchslosen, gegenüber Belastungen toleranten Fischarten besiedelt. Im Durchschnitt handelt es sich dabei um 15 Fischarten, wobei mehr als 90 % aller Fische auf die beiden Arten Plötze und Barsch entfallen. Insgesamt wurden 25 der in Berlin vorkommenden Fischarten auch in Kanälen nachgewiesen. Mit der 1876 begonnenen und einhundert Jahre währenden Nutzung von Rieselfeldern zur Abwasseraufbereitung wurden die sukzessive zunehmenden Rieselteichflächen durch ein dichtes Netz von Zu-, Ablauf- und Verbindungsgräben versorgt. Obwohl die meisten Gräben nach Aufgabe der Rieselfeldnutzung trockenfielen und verfüllt wurden, verfügt Berlin noch immer über eine Vielzahl von Gräben. Dabei handelt es sich um kleine, kaum strukturierte, weitgehend gerade verlaufende künstliche Fließgewässer. Etwa ein Viertel der im Berliner Gewässerverzeichnis ausgewiesenen Graben-km, insbesondere in den dicht bebauten Stadtteilen, sind verrohrt und für Fische nicht nutzbar. Die meisten Gräben führen heute nur sehr wenig Wasser, mit durchschnittlichen Abflüssen von 10 – 250 l/s. In niederschlagsarmen Jahren fallen sie gelegentlich auch komplett oder in Teilbereichen trocken. Sofern der Grabenverlauf unbeschattet ist entwickeln sich dichte Pflanzenbestände (u. a. Schilf, Rohrglanzgras, Seggen), die den gesamten Abflussquerschnitt einnehmen. Deshalb sind regelmäßige Beräumung und Mahd der Pflanzen Teil der üblichen Grabenunterhaltung. Die Gräben sind u. a. Hauptlebensraum der beiden einheimischen Stichlingsarten, Dreistachliger und Zwergstichling. Sie werden im Durchschnitt von fünf Fischarten besiedelt. Dem gegenüber war die Gesamtzahl von 28 in Gräben nachgewiesenen Fischarten überraschend hoch. Flussseen sind eine charakteristische Besonderheit der norddeutschen Tieflandflüsse. Zum einen aufgrund des sehr geringen Gefälles der Flüsse und Flusstäler, zum anderen aufgrund der jungen Entstehungsgeschichte der Landschaft, bildeten sich entlang der Flussgebiete ausgedehnte seenartige Erweiterungen aus. Diese durchflossenen Seen vereinen in sich typische Stillwasser-Lebensräume und Fließgewässer-Einflüsse in den Zu- und Ablaufbereichen. Zudem sind sie über die sie durchströmenden Flüsse untereinander und mit typischen Flussstrecken und Fließgewässer-Lebensräumen verbunden. Infolgedessen beherbergen sie neben den typischen Stillgewässerfischarten auch Arten, die z. B. zum Laichen in die Flüsse einwandern sowie Flussfischarten, die den See zumindest periodisch zur Nahrungssuche nutzen. Bis auf den Tegeler See sind die großen Berliner Flussseen relativ flach mit mittleren Tiefen zwischen 2,1 m (Großer Zug) und 5,4 m (Großer Wannsee), erwärmen sich schnell und sind sehr nährstoffreich. Sie bieten damit den typischen Fischarten der Bleiregion sehr gute Aufwuchs- und Ernährungsbedingungen. Die Flussseen sind der artenreichste Berliner Gewässertyp mit durchschnittlich 21 und einer Gesamtzahl von 37 darin nachgewiesenen Fischarten. Als Landseen wurden die größeren Gewässer (>1 ha) klassifiziert, die überwiegend durch Grundwasser gespeist sind und – wenn überhaupt – nur über marginale Zu- oder Abflüsse verfügen. Im Gegensatz zu den Flussseen ist der Wasseraustausch weitaus geringer und die mittlere Aufenthaltszeit des Wassers im See beträgt mehrere Jahre bis Jahrzehnte. Neben den natürlichen Landseen ist ein substantieller Anteil künstlichen Ursprungs, wobei es sich überwiegend um ehemalige Abgrabungsgewässer zur Rohstoffgewinnung handelt. In ihrer mittleren Fischartenzahl unterscheiden sich natürliche (12) und künstliche (11) Landseen nur geringfügig, weil beide Typen ungeachtet ihrer Entstehungsgeschichte gleichermaßen anthropogen überprägt sind, z.B. durch Fischbesatz und Nutzungen im Umland. Überraschend hoch waren daher die Unterschiede im Gesamt-Arteninventar: 25 Arten in den künstlichen Landseen und 33 in den natürlichen. Typische Fischarten nährstoffreicher, sommerwarmer Standgewässer finden in den Landseen geeignete Lebensbedingungen. In dieser Kategorie wurden alle Standgewässer kleiner 1 ha zusammengefasst, ungeachtet dessen, ob sie natürlichen oder künstlichen Ursprungs sind. Analog zu den Landseen unterlagen auch diese Kleingewässer vielfältigen Einflussnahmen, die eine weitere Differenzierung hinfällig machten. Die Palette der Kleingewässer, ihrer Uferstrukturen und Umlandnutzung war besonders vielfältig und reichte vom komplett betonierten Regenrückhaltebecken, über künstliche Parkgewässer, verlandete Abgrabungsgewässer bis hin zu natürlichen Restgewässern. Dementsprechend umfangreich war das 32 Arten umfassende Spektrum der hier insgesamt nachgewiesenen Fischarten. Aufgrund ihrer geringen Größe werden die einzelnen Kleingewässer aber nur von wenigen Fischarten – im Durchschnitt fünf – besiedelt, wobei typische Stillwasserarten wie Schleie und Rotfeder weit verbreitet waren, aber auch Plötze und Hecht. Die Umsetzung von Richtlinien des Rates der Europäischen Gemeinschaften stellen z. T. sehr umfangreiche Anforderungen an die Qualität von Fischbestandsdaten und deren Erfassung. So beinhaltet beispielsweise die Richtlinie 92/43/EWG des Rates vom 21. Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen (Abl. L 206), kurz “FFH-Richtlinie” , u. a. einen Anhang II “Tier- und Pflanzenarten von gemeinschaftlichem Interesse, für deren Erhaltung besondere Schutzgebiete ausgewiesen werden müssen” (zuletzt ergänzt durch Richtlinie 2006/105/EG des Rates vom 20. November 2006)). Dieser Anhang II der EG-Richtlinie listet auch vier der aktuell in Berlin vorkommenden Fischarten auf: Bitterling , Rapfen , Schlammpeitzger und Steinbeißer . Mit der Europäischen Wasserrahmenrichtlinie (EG-WRRL) vom 23. Oktober 2000 fand erstmalig die Fischfauna als biologische Qualitätskomponente für den ökologischen Zustand eines Gewässers Eingang in Europäische Rechtsverordnungen. Anhand von Arteninventar, Häufigkeit (Abundanz) und Altersstruktur der Fischfauna sowie dem Vorhandensein typspezifischer, störungsempfindlicher Fischarten soll der ökologische Zustand von Seen und Fließgewässern bewertet werden. Ziel der EG-WRRL war das Erreichen des guten ökologischen Zustands in allen Oberflächengewässern , bzw. des guten ökologischen Potentials in allen künstlichen und stark anthropogen veränderten Gewässern schon bis zum Jahr 2015. Da die ökologischen Zustände bis zum Jahr 2015 nicht erreicht wurden, wurde bereits die zweite Fristverlängerung bis zum Jahr 2027 wahrgenommen. Die Ergebnisse aus dem FFH-Monitoring und dem WRRL-Monitoring fließen in den Umweltatlas ein.

REFOPLAN 2022 - Ressortforschungsplan 2022, Veränderungen der Ozeane als CO2-Senke im Klimasystem, die Rolle der Polargebiete und Bewertung potentieller Kipppunkte - Teil 1 (Fokus Arktis)

Die Ozeane sind allein schon durch ihre Masse ein zentrales Element des Klimasystems und des Kohlenstoffkreislaufes. Sie nehmen sehr hohe Mengen an Wärme und CO2 auf, verteilen sie über die Ozeanströmungen und puffern so unter anderem auch die anthropogenen Treibhausgase und Temperaturerhöhungen ab. Insbesondere die polaren Ozeane sind aufgrund der Bildung von Tiefenwasser wichtige CO2-Senken, die durch die zunehmende Erwärmung, den verstärkten Süßwassereintrag auf Grund der Land- und Meereisschmelze und auch durch die veränderte Meereschemie (z.B. Versauerung) gefährdet sind. Gleichzeitig nehmen Anzeichen zu, dass die globalen Meeresströmungen sich verändern und somit auch die Umverteilung von Wärme und Gasen beeinflusst wird. Das Vorhaben soll analysieren, welche Kipppunkte des Erd-Klimasystems in den Polargebieten verortet sind und welche Wissenslücken zur CO2-Aufnahmekapazität, insbesondere im Zusammenhang mit der biologischen Kohlenstoffpumpe, bestehen. Auf dieser Basis sollen die arktischen CO2-Senken definiert und quantifiziert sowie ihre zukünftige Rolle im sich veränderten globalen Klimasystem entsprechend aktueller IPCC-Klimaszenarien, bewertet werden. Dafür sollen im Vorhaben (Teil 1, Fokus Arktis) alle verfügbaren Daten für die Arktis gezielt weiterverarbeitet, ausgewertet und aufbereitet werden. Das übergeordnete Ziel ist, die politische Entscheidungsebene besser zu informieren und so die verstärkt benötigten Schutzambitionen in den Polarregionen zu unterstützen. Antarktisspezifische Analysen sind in einem zweiten Teilvorhaben geplant (vsl. 02/2025 bis 02/2026) und sollen - soweit möglich - in das Gesamtergebnis einfließen. Die vorläufigen Ergebnisse des Vorhabens sollen im Frühjahr 2025 in einer internationalen Fachveranstaltung (Fachkonferenz/Workshop) diskutiert und - soweit möglich - peer-reviewed publiziert werden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Spätneogene und quartäre Klima- und Vereisungsgeschichte der Westantarktis

Das westantarktische Eisschild (WAES) umfasst ein Volumen von 2,2 Millionen km3 und trägt damit zu etwa 10 Prozent am gesamten antarktischen Eisvolumen bei. In der jüngsten Vergangenheit, hat sich diese Volumen allerdings dramatisch reduziert und zurzeit gehört der WAES zu der am stärksten abschmelzenden Region des antarktischen Kontinents. Satellitengestützte Untersuchungen legen den Schluss nahe, dass der WAES mit 86 Prozent den weitaus größten Anteil am Verlust der antarktischen Eismassen über die letzten zwei Jahrzehnte hatte. Sollte sich das Abschmelzen in einer ähnlichen Weise fortsetzen, ist davon auszugehen, dass alleine die Eismassen des WAES den globalen Meeresspiegelanstieg bis zum Ende des Jahrhunderts um einen Meter ansteigen lassen kann. Ein kompletter Zusammenbruch des WAES könnte sogar zu einem Anstieg des Meeresspiegels von bis zu 6 m führen. Computermodellierungen deuten an, dass Zusammenbrüche des WAES wiederholt seit dem späten Miozän aufgetreten sein könnten und sich über geologisch kurze Zeiträume von nur wenigen hundert Jahren entwickeln. Allerdings sind solche Modellierungen mit großen Unsicherheiten hinsichtlich der zeitlichen Entwicklung als auch der Menge der abschmelzenden Eismassen behaftet. Proxydaten, die Informationen hinsichtlich der zeitlichen und räumlichen Ausdehnung des WAES liefern, sind ein vielversprechender Ansatz um zukünftige Änderungen dieser sehr zerbrechlichen aber aus globaler Sicht äußerst wichtigen Region unseres Planeten zu bestimmen. Solche Proxydaten stehen aus der Westantarktis zurzeit jedoch nur begrenzt zur Verfügung. Sedimente, die vom Kontinentalhang der Amundsensee in der Westantarktis während IODP Expedition 379: 'Amundsen Sea West Antarctic Ice Sheet History' genommen wurden, bieten erstmalig die Möglichkeit kontinuierliche Klimaprofile und Profile der Eismassenbewegungen des WAES über die letzten ca. 6.8 Millionen Jahre in einer bis jetzt einmaligen Auflösung zu generieren. In dem hier vorgestelltem Projekt wird ein Multiproxyansatz bestehend aus bulk-geochemischen Methoden, Isotopen und Lipidbiomarkern gewählt um das Verhalten des WAES auf sich verändernde Umweltparameter zu untersuchen und zu bestimmen ob und auf welchen Zeitskalen partielle oder komplette Zusammenbrüche des WAES erfolgten. Im speziellen, soll der erste durchgängige Temperaturrekord der Westantarktis seit dem späten Miozän erzeugt und die Hypothese getestet werden, dass die Rückwanderung des WAES in der Amundsensee im direkten kausalen Zusammenhang mit dem Übergreifen von relativ warmen zirkumpolaren Tiefenwasser auf die Schelfbereiche der Westantarktis steht. Zudem soll untersucht werden, wie aquatische und terrestrische Ökosysteme auf sich verändernde Eismassenverhältnisse reagieren und ob diese Systeme bei einem sich erwärmenden Klima als Quellen oder eher als Senken für Kohlenstoff fungieren.

Klima- und Sedimentationsgeschichte im Sued-Atlantik vor SW-Afrika im Quartaer und Tertiaer

Anhand von Kolbenlot-Kernen und Proben aus Bohrungen des 'Deep Sea Drilling Projects' werden Sedimente des Quartaers und Tertiaers aus dem Bereich des Walfisch-Rueckens untersucht. Aus palaeontologischen und sedimentologischen Parametern wird versucht, die Klimageschichte - auch des benachbarten Kontinents - zu rekonstruieren. Besonders interessant ist in diesem Zusammenhang die Frage des kuestennahen Auftriebs von kaltem Tiefenwasser und die palaeoklimatisch bedeutsame Lage der Auftriebsgebiete, die wahrscheinlich waehrend der quartaeren Kaltzeiten anders war.

1 2 3 4 532 33 34