Nachweis und Bestimmung der genannten Stoffe. Entwicklung besonders empfindlicher Methoden.
a) Kommen unter bei uns ueblichen Lagerbedingungen bei Kartoffeln, Gemuese und Obst nach Pilzbefall Toxine vor? b) Infektion von Erntegut mit bekannten Pilzen, Lagerung und chromatographische Identifizierung der Toxine. c) Lagerversuche und Studium der Bildungsbedingungen der Toxine.
Die toxische Wirkung von Botrytis-Kulturmedien soll zur Diagnose auf Botrytisresistenz ausgenutzt werden. Dazu muss zuerst ein reproduzierbares, haltbares Toxinpraeparat gewonnen werden. Bis 06.1979. An Standardsorten wird die Korrelation zwischen Botrytisfestigkeit und Toxinempfindlichkeit ermittelt und danach die Fruehdiagnosemethode ausgerichtet (Dauerprogramm).
Ein Vergleich der Artendiversität von antarktischen und arktischen Cyanobakterienmatten (Cyanomatten) durch unsere Arbeitsgruppe weist auf eine überraschend hohe Übereinstimmungsrate der Arten hin (Kleinteich et al. 2017). Da es höchst unwahrscheinlich ist, dass sich diese Arten unabhängig voneinander in beiden polaren Regionen entwickelten, wird vermutet, dass Vögel oder Aerosole den Transport von Cyanomatten von der Arktis in die Antarktis ermöglichen. Entsprechend untersucht dieses Projekt den Einfluss des Klimawandels auf die potentielle Etablierung von Temperatur-toleranteren, nicht-endemischen Cyanobakterien (Xeno-Cyano) und deren Parasiten (Xeno-Parasiten) in antarktischen Gebieten und welche Konsequenzen dies für das antarktische Cyanomatten-Ökosystem hat. Wir konnten durch frühere Experimente den Einfluss von erhöhter Temperatur auf die Artendiversität und Toxinproduktion in antarktischen Cyanomatten nachweisen (Kleinteich et al. 2012). Da antarktische Gebiete einem kontinuierlichen Verlust der Eisdecke ausgesetzt sind, liegt die Vermutung nahe, dass nicht-endemische Cyanobakterien bisher unbesiedelte Gebiete erschließen bzw. werden endemische Cyanobakterien aufgrund ihrer schlechteren Anpassung an nicht-endemische Parasiten aus bereits besiedelten Gebieten verdrängt. Entsprechend hat dieses Projekt vier Hauptziele: Fest zu stellen ob 1.) sich in historischen Cyanomatten (1902, Scott Expedition) und den letzten 30 Jahren (1990, 1999/2000, 2010, 2021/2022) aus Rothera, Byers Halbinsel und McMurdo diese Xeno-Cyano und -Parasiten nachweisen lassen; 2.) Cyanomatten aus Spitzbergen eine vergleichbare Speziesverteilung (Cyanobakterien, Viren und Pilze) aufweisen wie auf der antarktischen Halbinsel (vermuteter Haupteintragungsort arktischer Spezies über Aerosole oder Vögel); 3.) eine Temperaturerhöhung durch Plexiglasabdeckung in den Cyanomatten auf Rothera und Byers zu einer Veränderung der Cyanodiversität, Toxinproduktion und verstärkt Parasitierung durch Viren und Pilze führt; und 4.) die Infektion mit arktischen Cyanomatten und Temperaturerhöhung bei antarktischen Cyanomatten im Labor nachweislich zu Veränderungen der endemischen Cyanomattendiversität führt. Die Diversitätsanalyse der Cyanomatten erfolgt durch Illumina (16S, ITS, g20 Gene) und Shotgun Sequenzierung. Die Abundanz von Viren und Pilzen wird durch ddPCR bestimmt und der Nachweis der Cyanotoxine erfolgt durch PCR, ELISA und UPLC-MS/MS. Die erhobenen Daten dürften die Eroberung und hiermit profunde voranschreitende Veränderung des antarktischen Cyanomattensystems durch nicht-endemische Spezies nachweisen. Durch die SARS-Cov2 Pandemie konnte die Hypothese, dass Vögel die Vektoren von Cyanomatten-Material sind, nicht getestet werden. Dennoch werden wir Cyanomatten aus unmittelbarer Nähe zu Vogelnistplätzen in Spitzbergen untersuchen. GPS-tracking Daten sollten mögliche Zusammenhänge zwischen Vogelmigration und der Verbreitung nicht-endemischer Cyanos und ihrer Parasiten aufdecken.
Das strikt anaerobe, Endosporen-bildende Bakterium Clostridioides difficile ist der Verursacher von nosokomialen Durchfallerkrankungen bei Mensch und Tier. Eine C. difficile Infektion (CDI) erfolgt meist nach einer Antibiotikabehandlung welche die Darmflora schädigt und bei der Wiederbesiedlung das Auskeimen von C. difficile ermöglicht. Weltweit ist eine Zunahme der Inzidenz so wie ein schwerer Verlauf von CDI zu beobachten was die Gesundheitskosten in die Höhe treibt und verstärkte Maßnahmen zur Infektions-Prävention und Kontrolle der Ausbreitung erfordert. Die Behandlung einer CDI wird dadurch erschwert dass Endosporen resistent gegenüber einer Antibiotikabehandlung sind. Vegetative Zellen und Sporen des Darmbesiedlers C. difficile werden mit den Fäzes ausgeschieden und können so in die Umwelt gelangen. C. difficile wird in Fäkal-belasteten Matrices wie Abwasser, Klärschlamm, Gülle und in mit Fäkalien in Berührung gekommenem Viehfutter oder Silage nachgewiesen. Durch den rasanten Anstieg der Anaerobtechnologie in Biogasanlagen zur Schlamm- oder Güllebehandlung kann davon ausgegangen werden, dass C. difficile in solchen Milieus überlebt oder sich sogar vermehrt und mit den Gär-Rückständen als Dünger in der Umwelt verbreitet wird. Ziel des geplanten Forschungsvorhabens ist, solche fäkal-belasteten Proben zu identifizieren und daraus C. difficile zu quantifizieren und Isolate zu charakterisieren. Neben dem Nachweis der Gene der Virulenzfaktoren für das Enterotoxin A und Cytotoxin B und dem binären Toxin CDT werden die Isolate einer Ribotypisierung und einer Antibiotikaempfindlichkeitstestung zur MHK Bestimmung unterzogen. Zudem sollen auch Antibiotika-Resistenzgene sowie konjugative Transposons nachgewiesen werden. Zum quantitativen Nachweis von C. difficile und dem Antibiotikaresistenz-vermittelnden konjugativen Transposon Tn5397 soll eine qPCR etabliert werden die es ermöglicht, Zellzahlen und Pathogenität von C. difficile in Fäkal-belasteten Proben zu bestimmen. Bedingt durch den hohen Stellenwert der Anaerobtechnologie für die Abwasserreinigung und Güllebehandlung sollen im Labormaßstab Biogasreaktoren aufgebaut und unter 'Realbedingungen' betrieben werden, um das Überleben, eine Vermehrung oder die Reduktion/Elimination von C. difficile Zellen/Sporen sowie die Exkretion des konjugativen Transposons Tn5397 zu testen. Diese Versuche sollen auch in Laboranlagen zur Simulation der konventionellen Güllelagerung sowie nach Behandlung in einer Labor-Ozonierungs- und UV-Entkeimungsanlage durchgeführt werden. Letztere werden unter anderem als vierte Reinigungsstufe zur Abwasserbehandlung in der Praxis empfohlen. Nur in Kombination von Umweltmikrobiologie und Verfahrenstechnik können die gesetzten Ziele erreicht und neues Wissen generiert werden um Aussagen bezüglich der Überlebensfähigkeit, Pathogenität und Verbreitungspfaden von C. difficile zu treffen und um das Infektionsrisiko für Mensch und Tier besser abschätzen zu können.
1
2
3
4
5
…
42
43
44