API src

Found 2584 results.

Related terms

Bericht: Globale Emissionstrend 2012

Der weltweite Ausstoß des klimaschädlichen Gases Kohlenstoffdioxid erreichte 2011 Rekordniveau: Insgesamt 34 Milliarden Tonnen CO2 gelangten im Jahr 2011 in die Erdatmosphäre. Das geht aus dem am 18. Juli 2012 veröffentlichten Jahresbericht des European Commission's Joint Research Centre (JRC) und des niederländischen Umweltforschungsinstituts PBL im italienischen Ispra hervor. Um drei Prozent ist der CO2-Ausstoß dem Bericht zufolge 2011 gestiegen. Dabei sank der Wert zwar in den Industrieländern der Europäischen Union um drei Prozent und in den USA sowie Japan um zwei Prozent. In China stieg der CO2-Ausstoß um neun Prozent und erreicht jetzt 7,2 Tonnen pro Kopf und Jahr.

EU-Treibhausgasemissionen 2010 gestiegen

Laut dem Bericht über das Treibhausgasinventar der Europäischen Gemeinschaft, der von der Europäischen Umweltagentur am 30. Mai 2012 veröffentlicht wurde, sind die Treibhausgasemissionen der 27 Mitgliedstaaten im Vergleich zum Vorjahr 2009 um 2,4 Prozent oder 111 Millionen Tonnen Kohlendioxid-Äquivalent angestiegen. Diese Zahlen bestätigen die früheren Schätzungen der Europäischen Umweltagentur.

Treibhausgase - Bilanzbericht

<p>Treibhausgasbilanzierung der Stadt Bielefeld nach Energieträgern und CO2-Emmissionen.</p>

Moorgebiete in Niedersachsen 1: 50 000 - Treibhausgas-Emissionen (WMS Dienst)

Moore stehen in einem engen Austausch mit der Atmosphäre. Naturnahe Moore nehmen das Treibhausgas Kohlendioxid auf und legen es in Form von Torf fest. Dabei geben sie in geringerem Umfang ein weiteres Treihausgas, Methan, frei. Mit der Inkulturnahme werden Moore entwässert, gedüngt und teilweise auch gepflügt. Dadurch wird die über Jahrtausende konservierte organischen Substanz verstärkt abgebaut. Dabei emittieren entwässerte und belüftete Moore die Treibhausgase Kohlenstoffdioxid und Lachgas. Messungen der Freisetzung von Treibhausgasen auf Mooren gestalten sich im Feld als sehr aufwändig. Zur Einordnung der Emissionen verwendet man daher Schätzgrößen, die Emissionsfaktoren. Für kartographische Darstellungen müssen diese anhand flächenhaft vorliegender Eingangsgrößen abgeleitet werden. Die Emissionsfaktoren, die nur für die kohlenstoffreichen Böden gelten, berücksichtigen den Bodentyp (BHK50) und die Biotoptypen aus vorliegenden naturschutzfachlichen Kartierungen (Karte Moorbiotope). Die Biotoptypen lassen näherungsweise Schlüsse auf die Feuchtebedingungen und auf Art und Intensität der Nutzung (v.a. bei Grünland und Wald) zu. Dort wo keine Biotoptypen vorliegen, wird die Landnutzung nach ATKIS® (BHK50 ATKIS) herangezogen. Diese erlaubt eine grobe Erfassung der Nutzungseinflüsse, ermöglicht jedoch keine Differenzierung hinsichtlich der Wasserstände und der Nutzungsintensität, die insbesondere bei Grünland sinnvoll wäre. Hilfsweise wird daher auf Flächen in Naturschutzgebieten, für die keine Biotopkartierung vorliegt, von einer geringen Nutzungsintensität bzw. von feuchten Bedingungen ausgegangen und der Emissionsfaktor entsprechend angepasst. Die Treibhausgasemissionen der kohlenstoffreichen Böden in Niedersachsen werden für unversiegelte oder gering versiegelte Flächen dargestellt. Die Berechnungen werden für folgende Bodenkategorien durchgeführt: Hochmoor, Niedermoor, Moorgley, Organomarsch mit Niedermoorauflage, flach mineralisch überdecktes Moor, Sanddeckkultur und Moor-Treposole. Die Karte zeigt die Treibhausgasemissionen in Tonnen CO2-Äquivalenten pro Hektar und Jahr. In den Geofakten 38 wird die Methodik der Emissionsberechnung im Detail beschrieben.

Moorgebiete in Niedersachsen 1: 50 000 - Treibhausgas-Emissionen

Moore stehen in einem engen Austausch mit der Atmosphäre. Naturnahe Moore nehmen das Treibhausgas Kohlendioxid auf und legen es in Form von Torf fest. Dabei geben sie in geringerem Umfang ein weiteres Treihausgas, Methan, frei. Mit der Inkulturnahme werden Moore entwässert, gedüngt und teilweise auch gepflügt. Dadurch wird die über Jahrtausende konservierte organischen Substanz verstärkt abgebaut. Dabei emittieren entwässerte und belüftete Moore die Treibhausgase Kohlenstoffdioxid und Lachgas. Messungen der Freisetzung von Treibhausgasen auf Mooren gestalten sich im Feld als sehr aufwändig. Zur Einordnung der Emissionen verwendet man daher Schätzgrößen, die Emissionsfaktoren. Für kartographische Darstellungen müssen diese anhand flächenhaft vorliegender Eingangsgrößen abgeleitet werden. Die Emissionsfaktoren, die nur für die kohlenstoffreichen Böden gelten, berücksichtigen den Bodentyp (BHK50) und die Biotoptypen aus vorliegenden naturschutzfachlichen Kartierungen (Karte Moorbiotope). Die Biotoptypen lassen näherungsweise Schlüsse auf die Feuchtebedingungen und auf Art und Intensität der Nutzung (v.a. bei Grünland und Wald) zu. Dort wo keine Biotoptypen vorliegen, wird die Landnutzung nach ATKIS® (BHK50 ATKIS) herangezogen. Diese erlaubt eine grobe Erfassung der Nutzungseinflüsse, ermöglicht jedoch keine Differenzierung hinsichtlich der Wasserstände und der Nutzungsintensität, die insbesondere bei Grünland sinnvoll wäre. Hilfsweise wird daher auf Flächen in Naturschutzgebieten, für die keine Biotopkartierung vorliegt, von einer geringen Nutzungsintensität bzw. von feuchten Bedingungen ausgegangen und der Emissionsfaktor entsprechend angepasst. Die Treibhausgasemissionen der kohlenstoffreichen Böden in Niedersachsen werden für unversiegelte oder gering versiegelte Flächen dargestellt. Die Berechnungen werden für folgende Bodenkategorien durchgeführt: Hochmoor, Niedermoor, Moorgley, Organomarsch mit Niedermoorauflage, flach mineralisch überdecktes Moor, Sanddeckkultur und Moor-Treposole. Die Karte zeigt die Treibhausgasemissionen in Tonnen CO2-Äquivalenten pro Hektar und Jahr. In den Geofakten 38 wird die Methodik der Emissionsberechnung im Detail beschrieben.

Climate cost modelling - analysis of damage and mitigation frameworks and guidance for political use

Dieser Bericht gibt einen umfassenden Überblick über die Klimakostenmodellierung, jeweils aus der Perspektive der Schadenskosten und der Vermeidungskosten. Er bietet auch eine Anleitung für politische Entscheidungsträger, welcher Ansatz je nach politischem Ziele verwendet werden sollte, um Klimakosten abzuleiten. Für beide Ansätze beschreibt der Bericht die Landschaft der verfügbaren Modelle und deren Methoden. Er analysiert die Rolle und die Auswirkung verschiedener Einflussfaktoren und unterteilt sie in Kategorien, wie z.B. Szenarien, normative Entscheidungen oder strukturelle Elemente. Der Bericht identifiziert und diskutiert die Hauptquellen von Unsicherheiten und die Spannweite der Werte in der Literatur. Er diskutiert die Grenzen der Interpretation von Modellergebnissen und macht dabei Annahmen und Ansätze verschiedener Klimamodelle transparent. Schließlich bietet der Bericht eine praktische Anleitung in vier Schritten, um ein "Preisschild" für die Klimakosten zu bestimmen. Wichtig ist dabei, die spezifische politische Fragestellung zu berücksichtigen. So erfordert die Internalisierung externer Kosten die Anwendung von Schadenskosten, während der notwendige Aufwand für die Einhaltung eines vereinbarten Temperaturlimits Vermeidungskosten bedingt. Quelle: Forschungsbericht

Touristische Mobilität im ländlichen Raum

Reisen und Tagesausflüge in ländliche Räume erfreuen sich zunehmender Beliebtheit. Mit mehr als 100 Mio. Ankünften im Jahr 2017 macht der Tourismus im ländlichen Raum 56,5% des Deutschlandtourismus aus, hinzukommen Tagesreisen. Auch wenn dieser Trend für die vergleichsweise strukturschwachen ländlichen Räume wirtschaftlich gesehen wünschenswert ist, bringt der durch den Tourismus generierte Verkehr diverse negative Folgeerscheinungen mit sich. Der Status quo der touristischen Mobilität im ländlichen Raum zeigt, dass dem MIV (PKW, Motorrad und Wohnmobil/Wohnwagen) mit einem Anteil von 83% an den Hauptverkehrsmitteln bei der Anreise im Zeitraum von 2011 bis 2018, die primäre Rolle zukommt. Doch gerade der MIV steht im Konflikt mit einer nachhaltigen Entwicklung des Tourismus und den gesuchten Reisemotiven wie intakte Natur und Erholung. Die durch den Verkehr, insbesondere den MIV verursachten Folgeerscheinungen reichen von Lärm- und Schadstoffemissionen über Flächenverbrauch und -zerschneidung bis hin zu Emissionen von klimaschädlichen Gasen und wirken sich negativ auf Mensch und Umwelt aus. Folglich ist eine Verlagerung der touristischen Mobilität im ländlichen Raum vom MIV auf den ÖV notwendig. Die Mobilitätsangebote vieler ländlicher Regionen sind jedoch nicht oder zu wenig auf die Bedürfnisse von Touristen ausgerichtet, daher bedarf es ganzheitliche Konzepte aus einer Kombination von Push- und Pull-Faktoren, welche einen Umstieg ermöglichen, bzw. beschleunigen. Ein umweltfreundliches, ganzheitliches und bedarfsorientiertes Mobilitätskonzept, welches die Bedürfnisse der Touristen mitberücksichtigt, kann neben der Reduzierung von umwelt- und gesundheitsschädlichen Folgeerscheinungen auch einen Beitrag zur Daseinsvorsorge und gesellschaftlichen Teilhabe leisten, in dem es ein umfangreicheres Angebot bietet, welches durch den Tourismus mit kofinanziert werden könnte. Für eine erfolgreiche Verkehrswende im Tourismus müssen ÖV-Angebote ähnlich attraktiv sein, wie der eigene PKW und eine durchgehende Mobilität während des Aufenthalts gewährleisten, doch auch schon vor der eigentlichen Reise müssen Hürden, die einem Umstieg vom MIV auf umweltfreundlichere Verkehrsmittel im Weg stehen, ausgeräumt werden. Dabei sind die Erweiterung der Angebote und die Aufwertung der Qualität, Steuerung von Nachfrageströmen, aktive Information zu und aktive Vermarktung von ÖV-Angeboten sowie finanzielle Anreize wichtige Stellschrauben, die zur Attraktivitätssteigerung genutzt werden können. Auf der anderen Seite können Restriktionen und Gebühren den MIV betreffend zu den gewünschten Ergebnissen beitragen. Welche Aspekte entlang der Customer Journey mit Blick auf die ökonomische, ökologische und soziale Dimension der Nachhaltigkeit dabei zu berücksichtigensind, beleuchtet dieser Beitrag. Quelle: Forschungsbericht

Transformationsprozess zum treibhausgasneutralen und ressourcenschonenden Deutschland - GreenEe

Das Umweltbundesamt (UBA) untersucht schon seit vielen Jahren, wie eine nachhaltige Entwicklung sowie eine treibhausgasneutrale und ressourcenschonende Lebensweise erreicht werden kann. Hierfür wurde ein interdisziplinäres Projekt gestartet: "RESCUE" (Wege in eine ressourcenschonende Treibhausgasneutralität). Dieses Projekt ist mit einem hohen Anteil an "Eigenforschung" des UBA und einer intensiven Einbindung externer Wissenschaftler über das hier berichtete Forschungsvorhaben (FKZ 3715411150) gelungen. Dabei wurden sechs Szenarien zur Transformation entwickelt. Die Green-Szenarien beschreiben unterschiedlich ambitionierte Transformationspfade zu einem ressourcenschonenden und treibhausgasneutralen Deutschland bis 2050. Die beiden GreenEe-Szenarien stehen für "Germany -resource efficient and greenhouse gas neutral -Energy efficiency" und fokussieren die Erschließung der Energieeffizienzpotenziale über alle Anwendungsbereiche hinweg. In GreenEe1 sind Produktionsmengen vorgegeben, Produkte, die aufgrund einer rückläufigen Nachfrage in Deutschland nicht mehr nachgefragt werden, werden exportiert. In GreenEe2 werden die Produktionsmengen entlang der Dynamik der inländischen Nachfrage ermittelt. Beide Szenarien beinhalten die grundlegende Transformation des Energiesystems einschließlich des Ausstiegs aus fossilen Rohstoffen und einer tiefgreifender Sektorkopplung mittels Elektrifizierung. Der Endenergiebedarf kann von 2.737 TWh in 2015 auf nur 1.609 TWh in GreenEe1 reduziert werden, der Anteil der erneuerbaren Energien im Strombereich steigt bereits auf 75 % in 2030 und 100 % in 2050. Der EE-Anteil der Brenn- und Kraftstoffe ist aufgrund des langsameren Markthochlaufes für PtX im Jahre 2040 bei 40 %. Im GreenEe2-Szeanrio wird der Endenergiebedarf dabei sogar auf 1.540 TWh reduziert, bei einer vergleichbaren Dekarbonisierung der Stromerzeugung, aber etwas höheren Dekarbonisierung der Brenn- und Kraftstoffe in 2040 von 42 %. Im Ergebnis wird in GreenEe1 (GreenEe2) im Jahr 2050 der Rohmaterialkonsum gegenüber 2010 um 60,6 % (61,8 %) reduziert. Der Anteil der Sekundärmaterialien am gesamten (primär- und sekundär-) Rohstoffbedarf/-verbrauch steigt auf 32 % (33 %). Pro Person werden nur noch 7,5 (7, 3) Tonnen Rohstoffe konsumiert, davon 2,2 Tonnen Biomasse, die überwiegend für die Ernährung gebraucht werden. Die technologischen Änderungen einschließlich Substitutionen (wie die der fossilen Rohstoffe durch erneuerbare Energien, der Steigerungen der Rohstoffeffizienz und des Recyclings) reduzieren die Nachfrage nach einer Vielzahl von Rohstoffen, ausgenommen davon sind Rohstoffe, die in Schlüsseltechnologien für die Transformation gebraucht werden. Die Treibhausgasemissionen können in GreenEe1 (GreenEe2) bis 2050 um 95,8 % (96,3 %) gegenüber 1990 reduziert werden, bis 2030 liegt der Rückgang der THG-Emissionen bei 60,2 % (61,3 %) . Allerdings können nur im Energie- und Verkehrssektor die Treibhausgase bis 2050 vollständig vermieden werden. In den anderen Quellgruppen Industrie, Landwirtschaft, Abfall und LULUCF verbleiben Emissionen, die nach dem heutigen Wissensstand noch nicht vollständig vermeidbar sind. Quelle: Forschungsbericht

Energiebilanz und CO2-Bilanz Nordrhein-Westfalen

In der Energiebilanz werden das Aufkommen und die Verwendung von Energieträgern in Nordrhein-Westfalen für jeweils ein Jahr möglichst lückenlos und detailliert nachgewiesen. Sie gibt Aufschluss über die energiewirtschaftlichen Veränderungen und erlaubt nicht nur Aussagen über den Verbrauch der Energieträger in den einzelnen Sektoren, sondern sie gibt ebenso Auskunft über den Fluss von der Erzeugung bis zur Verwendung in den verschiedenen Umwandlungs- und Verbrauchsbereichen. Um das wachsende Informationsbedürfnis hinsichtlich der Art und des Umfangs der den Treibhauseffekt hervorrufenden Faktoren Rechnung zu tragen, werden seit dem Bilanzjahr 1994 die energiebedingten Emissionen des wichtigsten Treibhausgases Kohlenstoffdioxid (CO2) für das Land Nordrhein-Westfalen bilanziert. Die Basis hierfür bildet wiederum die vorliegende Energiebilanz. Es werden die vom Umweltbundesamt ermittelten brennstoffspezifischen CO2-Emissionsfaktoren zur Anwendung gebracht. In Nordrhein-Westfalen wird die Energiebilanz im Auftrag des Ministeriums für Wirtschaft, Industrie, Klimaschutz und Energie jährlich von Information und Technik Nordrhein-Westfalen als Statistisches Landesamt erstellt. Die Daten dürfen unter der Datenlizenz Deutschland mit Namensnennung des Herausgebers IT.NRW verwendet werden.

CO2 storage potential of the Middle Buntsandstein Subgroup - EEZ of the German North Sea

The CO2 storage potential of the Middle Buntsandstein Subgroup within the Exclusive Economic Zone (EEZ) of the German North Sea was analysed within the framework of the GEOSTOR-Project. A total of 71 potential storage sites were mapped based on existing 3D models, seismic and well data. Static CO2 capacities were calculated for each structure using Monte Carlo simulations with 10,000 iterations to account for uncertainties. All potential reservoirs were evaluated based on their static capacity, burial depth, top seal integrity and trap type. Analysis identified 38 potential storage sites with burial depths between 800 m and 4500 m, reservoir capacities (P50) above 5 Mt CO2 and suitable sealing units. The best storage conditions are expected on the West Schleswig Block where salt-controlled anticlines with moderate burial depths, large reservoir capacities and limited lateral flow barriers are the dominant trap types. Relatively poor storage conditions can be anticipated for small (P50 <5 Mt CO2), deeply buried (> 4500 m) and structurally complex potential storage sites in the Horn and Central Graben. For more detailed information on the methodology and findings, please refer to the full publication: Fuhrmann, A., Knopf, S., Thöle, H., Kästner, F., Ahlrichs, N., Stück, H. L., Schlieder-Kowitz, A. und Kuhlmann, G. (2024) CO2 storage potential of the Middle Buntsandstein Subgroup - German sector of the North Sea. Open Access International Journal of Greenhouse Gas Control, 136 . Art.Nr. 104175. DOI 10.1016/j.ijggc.2024.104175

1 2 3 4 5257 258 259