API src

Found 197 results.

Entwicklung des Notfallschutzes in Deutschland

Entwicklung des Notfallschutzes in Deutschland Nach dem Unfall von Tschornobyl wurde 1986 das Bundesumweltministerium gegründet, drei Jahre später das Bundesamt für Strahlenschutz . Als direkte Folge von Tschornobyl entstand in Deutschland das "Integrierte Mess- und Informationssystem" (kurz IMIS ). Darin werden alle Messdaten offizieller Stellen zur Umweltradioaktivität gesammelt und ausgewertet. Mit 1.700 rund um die Uhr aktiven Überwachungssonden löst das flächendeckende ODL -Messnetz bei erhöhter Radioaktivität in der Luft Deutschlands automatisch Alarm aus. Nach dem Unfall in Fukushima 2011 sind Untersuchungsergebnisse des BfS in eine Empfehlung der Strahlenschutzkommission ( SSK ) zur Ausweitung der bisherigen Planungszonen für den Notfallschutz in der Umgebung von Kernkraftwerken eingeflossen. 1986: der Kalte Krieg ist noch nicht vorbei, Deutschland ist getrennt in DDR und BRD, und auch die (weltweite) Kommunikation geschieht ganz anders als heutzutage: Internet und Smartphones sind noch nicht erfunden. Als im April 1986 erste Meldungen und Bilder über einen Störfall im sowjetischen Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) bekannt wurden, herrschte zunächst Unsicherheit über das, was passiert war. Erst nach und nach gaben staatliche Stellen Bewertungen über das Ereignis ab. Die durch politische Rahmenbedingungen ohnehin dünne Informationslage wurde für die Bevölkerung in Deutschland zusätzlich diffus, da verschiedene staatliche Stellen unterschiedliche Verhaltensempfehlungen abgaben. Es gab keine bundesweit einheitlichen Richtwerte, keine gesetzliche Grundlagen und nur wenige Stellen, die die Radioaktivität in der Luft messen konnten. Internationale Abkommen über den schnellen gegenseitigen Informationsaustausch zu nuklearen Unfällen fehlten. 1989: Gründung des BfS In der Folge des Unfalls von Tschornobyl ( russ. : Tschernobyl) wurde noch im Jahr 1986 das Ministerium für Umwelt-, Naturschutz und Reaktorsicherheit ( BMU ) gegründet. Drei Jahre später folgte 1989 die Gründung des Bundesamtes für Strahlenschutz ( BfS ), welches unter anderem dafür zuständig ist, die Kontamination der Umwelt nach einem radiologischen Unfall schnell zu ermitteln und die Lage zu bewerten. Verschiedene wissenschaftliche Einrichtungen wurden im BfS integriert, so zum Beispiel das Institut für Strahlenhygiene des Bundesgesundheitsamtes in Neuherberg bei München, das Institut für Atmosphärische Radioaktivität des Bundesamtes für Zivilschutz in Freiburg, Teile der Physikalisch-Technischen Bundesanstalt in Braunschweig und (nach dem Mauerfall 1989) das Staatliche Amt für Atomsicherheit und Strahlenschutz der DDR in Berlin. Als Hauptsitz des BfS wurde Salzgitter gewählt. Gesetzliche Grundlagen Das Fehlen gesetzlicher Vorgaben führte nach dem Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) dazu, dass teilweise unterschiedliche Grenzwerte und Maßnahmen im Bund und in den Bundesländern empfohlen wurden. Um die rechtliche Voraussetzung für ein bundesweit koordiniertes Handeln in vergleichbaren Situationen zu schaffen, wurde bereits am 19. Dezember 1986 das "Gesetz zum vorsorgenden Schutz der Bevölkerung gegen Strahlenbelastung" (Strahlenschutzvorsorgegesetz) erlassen. Zweck dieses Gesetzes war es, die routinemäßige Überwachung der Radioaktivität in der Umwelt neu zu regeln. Außerdem galt es, "die Strahlenexposition der Menschen und die radioaktive Kontamination der Umwelt im Falle von Ereignissen mit möglichen, nicht unerheblichen radiologischen Auswirkungen unter Beachtung des Standes der Wissenschaft und unter Berücksichtigung aller Umstände durch angemessene Maßnahmen so gering wie möglich zu halten". Inzwischen regelt das 2017 verabschiedete Strahlenschutzgesetz ( StrlSchG ) die Maßnahmen zum Schutz der Bevölkerung vor radioaktiven Stoffen . Es vereinheitlicht die bisherigen gesetzlichen Regelwerke im Strahlenschutz und sieht unter anderem den Aufbau des Radiologischen Lagezentrums des Bundes ( RLZ ) unter Leitung des Bundesumweltministeriums vor. Meilensteine in der Entwicklung 2022: Angriffskrieg gegen die Ukraine Seit Beginn des russischen Angriffskrieges gegen die Ukraine im Februar 2022 finden erstmals in Europa militärische Auseinandersetzungen in einem Land mit Kernkraftwerken statt. Der Krieg in der Ukraine hat auch den radiologischen Notfallschutz in Deutschland beeinflusst: Die bis dahin etablierten und regelmäßig geübten Notfallschutz-Strukturen werden nun konkret auf dieses Ereignis angewandt und weiterentwickelt. Die Rufbereitschaften im BfS haben ihre Arbeit intensiviert . Unsere Kolleg*innen erstellen u.a. zweimal täglich eine mögliche Ausbreitungsberechnung anhand von Wetterdaten und zweimal wöchentlich eine Situationsdarstellung der Lage in der Ukraine. Welche Auswirkungen eine Freisetzung von Radioaktivität in ukrainischen, aber auch in anderen europäischen Kraftwerken auf Deutschland haben könnten, hat das BfS bereits vor Ausbruch des Krieges in der Ukraine regelmäßig untersucht. Wie bei internationalen Übungen und in unterschiedlichen Notfallszenarien in der Vergangenheit erprobt, überprüft das BfS auch im konkreten Fall des Ukraine-Krieges täglich etwa 500 bis 600 Messwerte aus der gesamten Ukraine und benachbarten Ländern. Die Daten stammen aus verschiedenen Messeinrichtungen sowohl vonseiten der Behörden vor Ort als auch der Zivilgesellschaft. Unsere Kolleg*innen werten routinemäßig unterschiedliche Quellen aus, um einen bestmöglichen Überblick zu erhalten und mögliche Falschmeldungen zu identifizieren. Zudem stehen sie, wie auch in Friedenszeiten, in einem engen Austausch mit internationalen Partnern, darunter mit der IAEA und der Europäischen Union ( EU ). Die radiologische Bedrohungslage hat sich durch das Kriegsgeschehen verändert: In dem Angriffskrieg auf die Ukraine werden immer wieder Kernkraftwerke in Kriegshandlungen hineingezogen. Außerdem gibt es neue oder aktueller gewordene Szenarien im Umfeld hybrider Bedrohungslagen, darunter Cyberangriffe und Straftaten im Zusammenhang mit radioaktiven Stoffen . Selbst der Einsatz von Kernwaffen in Europa scheint nicht mehr ausgeschlossen zu sein. Deutschland braucht in der neuen Sicherheitslage einen noch stärkeren radiologischen Notfallschutz und gute Vorbereitung. Dazu gehört auch, die Abläufe in unterschiedlichen Krisenszenarien immer wieder zu üben. Unsere Expert*innen beobachten nicht nur die Lage in der Ukraine genau, sondern üben auch andere Szenarien, um den radiologischen Notfallschutz weiter zu stärken. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 30.06.2025

Infopaket 40 Jahre Reaktorunfall von Tschornobyl

Infopaket 40 Jahre Reaktorunfall von Tschornobyl Medieninformation des Bundesamtes für Strahlenschutz Am 26. April 2026 jährt sich der Reaktorunfall von Tschornobyl (russ.: Tschernobyl) zum 40. Mal. Der Unfall ist bis heute das schwerste Unglück in der zivilen Nutzung der Kernenergie. Auch das zweitschwerste Reaktorunglück der Geschichte, die Havarie des Kernkraftwerks Fukushima Daiichi , jährt sich in Kürze. Dieser Unfall in Japan wurde vor 15 Jahren, am 11. März 2011, von einem verheerenden Tsunami ausgelöst. Als demokratischer Staat hat Deutschland aus den Unglücken der Vergangenheit gelernt und ist heute deutlich besser vorbereitet als in der Vergangenheit. Nuklearer Notfallschutz wird nicht dadurch obsolet, dass in Deutschland keine Kernkraftwerke mehr am Netz sind. Kernkraftwerke in den Nachbarländern, neue technische Entwicklungen wie etwa Small Modular Reactors (SMRs) sowie die veränderte geopolitische Weltlage u.a. infolge des russischen Angriffskriegs gegen die Ukraine erfordern auch hierzulande weiterhin hohe Expertise, um in Notfällen handlungsfähig zu sein. Bürger und Bürgerinnen erwarten transparente Informationen und sollten grundlegende Maßnahmen zum Selbstschutz kennen. Mit dem folgenden Infopaket möchten wir Sie auf gut verfügbare Materialien hinweisen und Ihnen unsere Unterstützung für Ihre Berichterstattung anlässlich der Jahrestage der Reaktorunglücke von Tschornobyl und Fukushima anbieten. Sprechen Sie uns jederzeit gerne an, wenn Sie weitere Informationen oder eine*n Interviewpartner*in benötigen. Gerne erläutern wir zum Beispiel, wie heute auf einen Nuklearunfall reagiert würde, wie das deutsche Radioaktivitätsmessnetz funktioniert, wie sich radioaktive Stoffe in Lebensmitteln nachweisen lassen oder wo in Deutschland noch Spuren des Reaktorunfalls von Tschornobyl zu finden sind. Außerdem ein Termin-Hinweis: Im Gedenken an das Ereignis richtet das Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit (BMUKN) am 24. April 2026 in Berlin eine Veranstaltung unter dem Motto "40 Jahre Tschernobyl – Was haben wir daraus gelernt?" aus. Bei Interesse können Sie sich für den BMUKN-Eventverteiler registrieren. Hintergrund: Der Unfall in Tschornobyl markiert eine Zäsur für den nuklearen Notfallschutz, den Strahlenschutz und die Umweltpolitik. Schon wenige Wochen danach wurde im damaligen Westdeutschland das Bundesumweltministerium gegründet. Drei Jahre später folgte das Bundesamt für Strahlenschutz ( BfS ), das die Kompetenzen des Strahlenschutzes, einschließlich Kerntechnik und nuklearer Entsorgung, bündelte. Maßnahmen des nuklearen Notfallschutzes wurden überprüft und die Überwachung der Umwelt auf Radioaktivität systematisiert und deutlich ausgeweitet. Nach dem Reaktorunglück in Fukushima wurden die Sicherheit der deutschen Kernkraftwerke wie auch der radiologische Notfallschutz erneut auf den Prüfstand gestellt und – wo nötig – Konsequenzen gezogen. Heute sind nuklearer Notfallschutz und Behördenstrukturen weiterentwickelt und werden kontinuierlich den aktuellen Bedürfnissen angepasst. Stand: 05.02.2026

Wo kommt Radioaktivität in der Umwelt vor?

Wo kommt Radioaktivität in der Umwelt vor? Radionuklide sind in der Umwelt überall anzutreffen. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Radionuklide sind in der Umwelt überall anzutreffen Bei vielen Menschen erzeugt der Begriff " Radioaktivität " Unbehagen. Die von radioaktiven Stoffen ausgesandte ionisierende Strahlung wird häufig als bedrohlich empfunden - unabhängig davon, wie stark sie ist und woher sie stammt. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Wirken ionisierende Strahlen auf einen Menschen ein, so sprechen wir von einer Strahlenexposition – umgangssprachlich auch Strahlenbelastung genannt. Natürliche Strahlenbelastung Die natürliche Strahlenbelastung setzt sich aus inneren und äußeren Komponenten zusammen. Die innere Komponente macht den Hauptanteil der natürlichen Strahlenexposition aus. Zwei Drittel der gesamten natürlichen Strahlenexposition entfallen auf die innere Komponente, ein Drittel auf die äußere. Innere Strahlenbelastung Äußere Strahlenbelastung Innere Strahlenbelastung Über die Atemluft und die Nahrung nimmt der Mensch seit jeher natürliche Radionuklide in den Körper auf. Darüber hinaus können Radionuklide über offene Wunden in den Körper gelangen. Aufnahme über den Atem Der Großteil der natürlichen Strahlenbelastung geht auf das Einatmen des radioaktiven Gases Radon mit seinen Folgeprodukten zurück. Durch Radon sind wir im Durchschnitt pro Jahr einer Strahlenbelastung von 1,1 Millisievert ausgesetzt. Weitere Informationen finden Sie unter Radon. Aufnahme über die Nahrung Mit der Nahrung werden natürliche Radionuklide aus den radioaktiven Zerfallsreihen des Thoriums und Urans sowie das Kalium-40 aufgenommen; dadurch kommen im Mittel jährlich 0,3 Millisievert hinzu. Weitere Informationen finden Sie unter Radioaktivität in Lebensmitteln. Äußere Strahlenbelastung Die äußere Strahlenbelastung beträgt rund 0,7 Millisievert im Jahr. Kosmische Strahlung Ein erheblicher Teil der ionisierenden Strahlung , die auf den Menschen einwirkt, stammt aus der kosmischen Strahlung . Diese gelangt von der Sonne und aus den Tiefen des Weltalls zur Erde und besteht im Wesentlichen aus energiereichen Teilchen und aus Gammastrahlung . Auf ihrem Weg durch die Lufthülle wird die kosmische Strahlung teilweise absorbiert. Die Intensität der kosmischen Strahlung hängt somit von der Höhenlage ab. Sie ist auf Meeresniveau am niedrigsten und nimmt mit der Höhe eines Ortes zu. Auf der Zugspitze ist sie viermal höher als an der Küste. Flugzeuge kann man gegen die kosmische Strahlung nicht abschirmen. Daher ist der Mensch während eines Fluges dieser Strahlung ausgesetzt. Weitere Informationen finden Sie unter Strahlenexposition von Flugpassagieren sowie unter Überwachung des fliegenden Personals . Terrestrische Strahlung Zur äußeren Strahlenexposition zählt des Weiteren die terrestrische Strahlung . Ihre Ursache sind natürlich vorkommende radioaktive Materialien, die regional sehr unterschiedlich in Böden und Gesteinsschichten der Erdkruste vorhanden sind. Die durch die terrestrische Strahlung verursachte jährliche effektive Dosis der Bevölkerung beträgt im Bundesgebiet im Mittel etwa 0,4 Millisievert , davon entfallen auf den Aufenthalt im Freien zirka 0,1 Millisievert und auf den Aufenthalt in Gebäuden etwa 0,3 Millisievert . Natürlich vorkommende Radionuklide in Baumaterialien Steine und Erden sind wichtige Rohstoffe für mineralische Baumaterialien wie zum Beispiel Ziegel und Beton. Die in den Steinen enthaltenen Radionuklide gehen in die Baustoffe über und tragen auf diese Weise beim Aufenthalt in Häusern ebenfalls zu einer äußeren Strahlenexposition bei. Weitere Informationen finden Sie unter Baumaterialien. Natürliche Strahlenbelastung in Deutschland Die gesamte natürliche Strahlenbelastung in Deutschland beträgt durchschnittlich 2,1 Millisievert im Jahr ( effektive Dosis ). Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von etwa einem bis zu zehn Millisievert . Belastung aus künstlichen radioaktiven Quellen Bei künstlichen Radionukliden in der Umwelt denkt man an Reaktorkatastrophen, wie sie in Tschornobyl ( russ. : Tschernobyl) oder Fukushima geschehen sind. Aber auch bei Kernwaffenversuchen wurden künstliche Radionuklide freigesetzt. Auch im Normalbetrieb entweichen in geringem Maße künstliche Radionuklide aus kerntechnischen Anlagen. Dies wird in verschiedenen Messnetzen streng überwacht. Weitere Informationen finden Sie unter IMIS . Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 04.07.2025

Abschaltung des Atomkraftwerks Neckarwestheim GKN II

wann wird das Umweltministerium den fehleranfälligen Reaktor abschalten, um die Bevölkerung vor gesundheitlichen Risiken zu schützen? Viruserkrankungen sind für manche ein alljährliches meist harmloses Ereignis. Ein GAU in einem AKW vernichtet die Gesundheit aller Bürger*innen in einer ganzen Region. Die Fakten sind bekannt. Wann reagiert der grüne Umweltminister Franz Untersteller darauf? Anhang: RISSE im AKW ! Wir fordern den Umweltminister von Baden-Württemberg - Franz Untersteller - auf, die am 22.9.2019 erteilte Genehmigung zum Weiterbetrieb von Block 2 des Atomkraftwerkes Neckarwestheim unverzüglich aufzuheben! Das AKW weist schwerwiegende Mängel auf; der Weiterbetrieb ist nicht mehr zu verantworten! Siehe Fußnoten 1 +2) KONKRET: Im AKW Neckarwestheim Block II von EnBW sind hunderte Risse in Dampferzeugerrohren aufgetreten. Dieses AKW zwischen Stuttgart und Heilbronn ging 1989 an’s Netz und soll – nach dann 34 Betriebsjahren - als letztes deutsches AKW erst am 31.12.2022 abgeschaltet werden. Als Folge einer jahrelangen fehlerhaften Betriebsweise sind die Heizrohre der Dampferzeuger, die das hochradioaktive Primärkreiswasser des Reaktorkreises führen, von Spannungsriss- und Lochfraß-Korrosion betroffen. Auch bei der letzten Jahresrevision im August 2019 wurden 209 Risse und 87 weitere Korrosionsschäden an den Dampferzeuger-Heizrohren festgestellt – im dritten Jahr in Folge, und es werden jedesmal mehr. Insgesamt sind bis jetzt rd. 400 Rohre betroffen. Hinzu kommen weitere Schäden an 1.100 Kondensator-Rohren, Undichtigkeiten an Vorwärmern, fehlerhafte Stellungsanzeigen an Sicherheitsventilen, Mängel an den Notstromdieseln u.a.m. Der Betreiber EnBW gibt an, der „sichere Weiterbetrieb" sei "garantiert“. Aber selbst der TÜV schließt in seinem Prüfbericht v. 12.9.19 einen „wanddurchdringenden Riss“ nicht aus. Dennoch hat das Umweltministerium von Baden-Württemberg den Weiterbetrieb dieser abgenutzten und überalterten Reaktor-Anlage Neckarwestheim genehmigt, s. Fußnote 3) Sicherheit ist kein Lotteriespiel! Reißt auch nur ein einziges Dampferzeuger-Heizrohr auf oder gar ab, ist ein schwerer Kühlmittel-Verlust-Störfall im Reaktor mit Freisetzung erheblicher Mengen Radioaktivität in die Umwelt nicht mehr aufzuhalten. Dieser kann bis zur Kernschmelze führen, wie sie sich u.a. bei den Atomkatastrophen 2011 in Fukushima sowie 1986 in Tschernobyl wie auch 1979 im TMI-Reaktor bei Harrisburg/USA ereignet hatte. Die Folgen für die Bevölkerung im dichtbesiedelten Mittleren Neckarraum mit den Großstädten Stuttgart und Heilbronn sind unabsehbar – hier leben im Umkreis von 40 km um das AKW Neckarwestheim 2,5 Mio. Menschen. Vielen Dank für Ihre/Eure Unterstützung! Quellen: 1) Rede von Dipl.-Ing. Hans Heydemann auf der Demonstration vor dem AKW Neckarwestheim anlässlich des 9. Jahrestages (11. März) des dreifachen Super-GAUs in Fukushima/Japan am 8.3. 2020 2) ’Reaktor Rostiges Rohr’, KONTEXT, 16.10.2019 3) Pressemitteilung Nr.208/2019 des Umweltministeriums Ba-Wü v. 2.9.2019.

Verhalten von radioaktivem Caesium (freigesetzt durch den Reaktorunfall von Tschernobyl) in typischen Boeden Norddeutschlands

Durch den Reaktorunfall in Tschernobyl wurde unter anderem das langlebige radioaktive Isotop Cs-137 freigesetzt und ueber weite Regionen Europas - einschliesslich der norddeutschen Tiefebene - verteilt. Die Verlagerung des Caesiums wird in charakteristischen Boeden Norddeutschlands - Marsch, Moor, Podsol, Pseudogley - verfolgt und die Verfuegbarkeit dieses Nuklides fuer die Pflanze festgestellt. Die Untersuchungen sollen dazu beitragen, die Kenntnisse ueber das Verhalten des Cs in geringen Konzentrationen zu verbessern. Sie sollen ausserdem klaeren helfen, inwieweit Standorteigenschaften - insbesondere hohe Humusgehalte und Kalkgehalt - zur verstaerkten Mobilitaet beitragen. Ergebnisse unmittelbar praktischer Bedeutung koennten in Bezug auf Verbesserung der Vorhersagbarkeit des Cs-Verhaltens in Boeden, auf die Pflanzenverfuegbarkeit des Cs und auf das problem der stark variierenden Angaben zu Transferfaktoren erzielt werden.

Messungen der 129I-Emissionen der Aufbereitungsanlagen in Tomsk, Krasnojarsk und Tscheljabinsk für 131I-Dosisrekonstruktionen

Im weiträumigsten Gebiet um die militärischen 239Pu-Produktionsanlagen in Tscheljabinsk, Tomsk und Krasnojarsk und um das Testgebiet von Semipalatinsk wird mit Hilfe von Messungen des langlebigen 129I eine retrospektive Dosimetrie des kurzlebigen 131I durchgeführt. Unter Miteinbeziehung der 129I-Einträge durch die Kernwaffentests, die zivilen Aufbereitungsanlagen La Hague und Sellafield und den Reaktorunfall von Tschernobyl wird eine Datenbasis für die Verwendung von 129I als Tracer in der Umwelt erstellt. Wasserproben von Seen mit langen Abflusszeiten wie Khuvsugul Nuur, Uvs Nuur, Orog, Achit (alle Mongolei), Baikal, Balachasch, Issyk Kul und von kleineren Seen und Bodenproben aus dem Gebiet werden genommen. Mit Beschleunigungsmassenspektrometrie werden 129I /127I-Verhältnisse gemessen und 129I-Fluenzen abgeleitet. 129I-Immissionen und -Verteilungen werden mit atmosphärischen Transportrechnungen erhalten. In Abhängigkeit der Bestrahlungszeit der Brennelemente und der Wartezeit zwischen Bestrahlung und Aufbereitung werden mit atmosphärischen Transportmodellen 131I-Aktivitäten im Bereich der Anlagen und im Altai-Gebiet berechnet.

Radioaktivitätsmonitoring von Böden im Rahmen des Strahlenschutzvorsorgegesetzes

Überwachung der Radioaktivität in Böden im Rahmen des Strahlenschutzvorsorgegesetzes unter besonderen Berücksichtung des Eintrages durch den Tschernobyl-Fallout.

Von 1986 bis 2026 - Eine Analyse kollektiver Erinnerung an Tschernobyl und deren Konsequenzen für den radiologischen Notfallschutz in Deutschland

Quantitative Erfassung molekulargenetischer Alterationen in Schilddruesentumoren bei Kindern nach Tschernobyl

ELE/RET-Rearrangements finden sich als moeglicherweise typische molekulare Veraenderung mit hoher Praevalenz in Schilddruesencarcinomen von Kindern nach Fall-Out-Exposition infolge des Reaktorunfalls nach Tschernobyl.

Abschluss des Forschungsprojekts Untersuchung der Inzidenz strahleninduzierter Tumoren und Schilddruesenaffektionen in Weissrussland, Untersuchung der Indidenz strahlenassoziierter Tumoren und Schilddruesenaffektionen in Weissrussland

Das Kernkraftwerkunglueck in Tschernobyl am 26. April 1986 ist bis heute die groesste Katastrophe im Zusammenhang mit der friedlichen Nutzung der Kernenergie. Dementsprechend wurden auch weite Gebiete der ehemaligen Sowjetunion radioaktiv verseucht. Das Ausmass der gesundheitlichen Folgen fuer die betroffene Bevoelkerung ist nicht bekannt; mit einer Zunahme von Krebserkrankungen muss jedoch gerechnet werden. Weissrussland verfuegte bereits zur Zeit der Reaktor-Katastrophe von Tschernobyl ueber ein landesweites Krebs-Registrierungs-System. Das Institut fuer Sozial- und Praeventivmedizin der Universitaet Bern arbeitet mit verschiedenen weissrussischen Partnern zusammen: Die Datenerhebung und Ausweitung werden derzeit informatisiert und die Qualitaet der erhobenen Daten ueberprueft. Das Ziel ist, eine Zunahme von Krebsleiden zu erfassen und hinsichtlich einer Beziehung zum Reaktorunglueck zu untersuchen. Im Moment zeichnet sich ein Anstieg des kindlichen Schilddruesenkrebses ab; ein Zusammenhang mit der Tschernobyl-Katastrophe scheint suggestiv. Ein Beweis bedarf aber noch weiterer eingehender Untersuchungen.

1 2 3 4 518 19 20