API src

Found 103 results.

Related terms

Überwachung des fliegenden Personals

Überwachung des fliegenden Personals In großen Höhen wirkt deutlich mehr Höhenstrahlung auf den Menschen als am Boden. Piloten und flugbegleitendes Personal sind als beruflich strahlenexponierte Personen überwachungspflichtig, wenn sie während der Flüge durch Höhenstrahlung eine effektive Dosis von mehr als 1 Millisievert im Kalenderjahr erhalten können. Das Strahlenschutzregister des BfS erfasst seit August 2003 die monatlich ermittelten Dosiswerte des fliegenden Personals. Für das Flugpersonal wird die Strahlenbelastung pro Flug mittels anerkannter Rechenprogramme anhand von Flugdaten berechnet. Die Prüfung von Rechenprogrammen zur Abschätzung der Körperdosis des fliegenden Personals im Rahmen der Anerkennungsverfahren beim Luftfahrt-Bundesamt erfolgt durch das BfS . Strahlenbelastung in unterschiedlichen Höhen In großen Höhen wirkt deutlich mehr Höhenstrahlung auf den Menschen als am Boden. Im Flugzeug gibt es keine effiziente Möglichkeit, sich dagegen abzuschirmen. Piloten und flugbegleitendes Personal können daher, vor allem wenn sie häufig Langstrecken auf den Polrouten fliegen, Strahlendosen erhalten, die durchaus vergleichbar sind mit Dosiswerten von Berufsgruppen, die ionisierende Strahlung einsetzen oder die mit radioaktiven Quellen umgehen. Strahlenschutzüberwachung des fliegenden Personals Die EU -Richtlinie 96/29 EURATOM , die durch die EU -Richtlinie 2013/59 EURATOM ersetzt wurde, verlangte eine Strahlenschutzüberwachung des fliegenden Personals. In Deutschland wurde diese Forderung erstmals 2001 mit der Novelle der Strahlenschutzverordnung und 2018 mit dem Strahlenschutzgesetz (StrSchG) in Verbindung mit der neuen Strahlenschutzverordnung (StrSchV) in nationales Recht umgesetzt: Überwachungspflichtig ist Luftfahrtpersonal dann, wenn es in einem Beschäftigungsverhältnis gemäß deutschem Arbeitsrecht steht und während der Flüge durch Höhenstrahlung eine effektive Dosis von mehr als 1 Millisievert im Kalenderjahr erhalten kann. Für diese Beschäftigten ist die Körperdosis zu ermitteln, zu begrenzen und unter Berücksichtigung des Einzelfalls zu reduzieren. Die Betreiber von Flugzeugen sind verpflichtet, die Dosiswerte zu ermitteln und durch eine entsprechende Planung des Personaleinsatzes und der Flugrouten die Strahlendosis ihrer Beschäftigten zu reduzieren. Strahlenschutzregister des BfS erfasst Strahlenbelastung des Cockpit- und Kabinenpersonals deutscher Luftfahrtgesellschaften Die monatlich ermittelten Dosiswerte des fliegenden Personals werden seit August 2003 im Strahlenschutzregister des BfS erfasst. Es überwacht unter anderem die Einhaltung der Grenzwerte der zulässigen Jahresdosen und die Berufslebensdosis. Da die physikalischen Bedingungen auf Flügen sehr genau bekannt sind, wird die Strahlenbelastung pro Flug anhand von Flugdaten berechnet. Dazu dürfen die Fluggesellschaften die vom Luftfahrt-Bundesam t zugelassenen Computerprogramme einsetzen. Die für die Zulassung erforderliche Prüfung dieser Rechenprogramme übernimmt das BfS . Es legt dahingehend auch die Anforderungen für eine erfolgreiche Anerkennung fest. Die Programme ermitteln auf der Basis von physikalischen Messungen (zum Beispiel der Neutronenflussdichte) und anhand der Flugdaten (Start- und Zielflughafen, Flugdauer und -höhe, Datum) die effektive Dosis , die aus dem jeweiligen Flug resultiert. Die Fluggesellschaften melden die errechneten Werte an das Luftfahrt-Bundesamt, das die Aufsicht über das fliegende Personal führt und unter anderem die Einhaltung von Dosisgrenzwerten überwacht. Dies gewährleistet auch für das fliegende Personal eine rechtlich abgesicherte Strahlenschutzüberwachung. Das Luftfahrt-Bundesamt übermittelt jeweils die Monatsdosen der Beschäftigten an das Strahlenschutzregister des BfS . Mittlere effektive Jahresdosis der beruflich strahlenexponierten Personen in verschiedenen Berufsgruppen im Jahr 2023 (N = Anzahl der messbar strahlenexponierten Personen pro Berufsgruppe) Berufsgruppe mit vergleichsweise hoher Strahlenbelastung Das fliegende Personal stellte 2023 mit rund 38.000 Beschäftigten etwa neun Prozent aller beruflich strahlenschutzüberwachten Personen, die im Strahlenschutzregister des BfS geführt werden. Diese neun Prozent erhalten mit einer Kollektivdosis von zirka 44 Personen-Sievert zwei Drittel der gesamten beruflich bedingten Strahlendosis in Deutschland. Die Abbildung zur mittleren effektiven Jahres im Jahr 2023 zeigt, dass das fliegende Personal mit einer durchschnittlichen effektiven Jahresdosis von 1,2 Millisievert nach den Beschäftigen an Radon-Arbeitsplätzen an Platz zwei der strahlenexponierten Berufsgruppen steht. Die durchschnittliche Strahlenbelastung des medizinischen Personals liegt im Vergleich dazu mit einer effektiven Jahresdosis von 0,3 Millisievert deutlich niedriger. Vergleich der Häufigkeitsverteilungen der Jahresdosis beruflich strahlenexponierter Personen in verschiedenen Bereichen im Jahr 2023 Charakteristisch ist auch der Unterschied bei den Dosisverteilungen, wie die Abbildung zur Häufigkeitsverteilung der Jahresdosis beruflich strahlenexponierter Personen im Jahr 2023 zeigt: Beim fliegenden Personal (blaue Balken) sind Jahresdosiswerte von 1,0 bis 1,5 Millisievert am häufigsten, alle anderen verteilen sich in etwa symmetrisch um diese Gruppe. Dagegen haben in den anderen beruflichen Bereichen Medizin, Forschung, Kerntechnik und Industrie (rote Balken) die meisten strahlenexponierten Personen nur Dosiswerte bis 0,5 Millisievert ; mit steigenden Dosiswerten fallen die Häufigkeiten dann steil ab. Dennoch sind für die Berufsgruppen, die ionisierende Strahlung einsetzen oder mit radioaktiven Quellen umgehen, Jahresdosen bis 20 mSv pro Jahr möglich. Im Vergleich werden beim fliegenden Personal Jahresdosen über acht Millisievert praktisch nicht beobachtet. Begrenzte Möglichkeiten zur Minimierung der Strahlenbelastung Es ist bislang technisch nicht möglich, Flugzeuge gegen die Höhenstrahlung abzuschirmen. Geringere Flughöhen oder weniger dosisintensive Flugrouten sind in der Regel nicht zielführend, da sie Kosten und Umweltbelastung erhöhen; außerdem begrenzen die Belange der Flugsicherheit, die immer Priorität haben, den Handlungsspielraum. Die Möglichkeiten des Strahlenschutzes beschränken sich daher auf vergleichsweise wenige Maßnahmen bei der Flugplanung, um Routendosen zu senken, sowie bei der Einsatzplanung der Crews, um eine möglichst faire Verteilung der Dosis auf das Personal zu erreichen. Stand: 11.12.2024

Studie ueber den technologischen Stand von Pyrolyse- und Hochtemperaturverbrennungsverfahren in USA, Europa und Japan

Ziel der Arbeit ist es, bestehende Pyrolyseanlagen im Hinblick auf technische Aspekte, Kosten, Wert der Rohstoffrueckgewinnung (monetaer und nicht monetaer) und Umweltbelastung zu untersuchen. Die Anlagen werden auf 100-150 Tagestonnen-Anlagen umgerechnet und danach einer Kosten-Nutzen-Analyse unterzogen. Abhaengig von lokalen Gegebenheiten wird die Gewichtung der Kriterien im Analysemodell vorgenommen. Das Ergebnis ist die Benennung einer oder mehrerer Verfahren, die die gestellten Anforderungen erfuellen. Die ausgewaehlten Verfahren werden dann noch einmal kritisch untersucht, um Auskunft ueber verfahrenstechnische Probleme zu erhalten.

Hocheffiziente, kostengünstige und langlebige Natrium-Ionen-Batterie Zellen

Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar.

Weiterentwicklung der Beschaffung im Umweltbundesamt und anderen Bundesbehörden unter Umsetzung neuer Vorgaben aus Ressourcen-, Umwelt- und Klimaschutz

Der Ressourcen-, Umwelt- und Klimaschutz in der Beschaffung des Umweltbundesamtes und anderen Bundesbehörden, wie den zentralen Beschaffungsstellen/dem Kaufhaus des Bundes, soll weiter operationalisiert und in konkreten Beschaffungsvorgängen umgesetzt und dokumentiert werden. Dabei sollen die Umweltwirkungen umfassend betrachtet werden, d.h. Ziele sind die Steigerung der Kreislaufwirtschaft und des Klimaschutzes, der Schutz der Biodiversität sowie eine minimale Schadstoffbelastung der Menschen und der Umweltmedien. Ergebnisse sind 1) Systematische Aufbereitung der im UBA und anderen Bundesbehörden erfolgenden Beschaffungen und deren Beschaffungswege (zentral oder dezentral) und umfassende Analyse von deren Umweltauswirkungen, Priorisierung von Beschaffung mit hohen Umweltauswirkungen, 2) Beschaffungshilfen - Erstellung eines Leitfadens - , bei denen umwelt- und gesundheitsverträglichere Lösungen mit konkreten Kriterien adressiert und Berechnungstools adressiert werden, 3) Erstellung von Berichtsformaten, in denen über die Umweltaspekte in der Beschaffung der Behörde(n) regelmäßig berichtet werden kann, 4) Durchführung von Informationsveranstaltung mit Beschaffenden anderer Behörden auch mit Blick auf die Wertschätzung der Mitarbeitenden in den Beschaffungsstellen

Synergien aus physikalischen und verkehrsplanerischen Modellen zur multikriteriellen Optimierung multimodaler nachfrageorientierter Verkehre, Teilvorhaben 3 und 4: Integration der Feinmodelle; Mulitkriterielle Linien- und Fahrplanung unter Gleichgewichtsbedingungen

Synergien aus physikalischen und verkehrsplanerischen Modellen zur multikriteriellen Optimierung multimodaler nachfrageorientierter Verkehre

Synergien aus physikalischen und verkehrsplanerischen Modellen zur multikriteriellen Optimierung multimodaler nachfrageorientierter Verkehre, Teilvorhaben 1: Verkehrsmodelle für die strategische Planung multimodaler Verkehre

Synergien aus physikalischen und verkehrsplanerischen Modellen zur multikriteriellen Optimierung multimodaler nachfrageorientierter Verkehre, Teilvorhaben 2: Multikriterielle Optimierung für das Grobmodell

Synergien aus physikalischen und verkehrsplanerischen Modellen zur multikriteriellen Optimierung multimodaler nachfrageorientierter Verkehre, Teilvorhaben 5: Gleichgewichtsverteilungen für multimodale Verkehrssysteme

Wirtschaft und Umwelt

<p>Wirtschaft und Umwelt</p><p>Die derzeitige Wirtschaftsweise untergräbt unseren Wohlstand, weil sie die Lebensgrundlagen zerstört. Daher ist der Übergang zu einem wirtschaftlichen Handeln erforderlich, das in Einklang mit Natur und Umwelt steht, einer Green Economy.</p><p>Green Economy</p><p>Die aktuelle Wirtschaftsweise zerstört die natürlichen Lebensgrundlagen und untergräbt dadurch den Wohlstand heutiger und kommender Generationen. Die noch immer jährlich steigenden Treibhausgasemissionen und der daraus resultierende ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠, sowie der andauernde Verlust an Artenvielfalt, der Ressourcenverbrauch und die Umweltverschmutzung sind Beispiele für diese Entwicklung. Bereits im Jahr 2006 zeigte der sogenannte „Stern Report“ auf, dass sich allein die durch den ⁠Klimawandel⁠ entstehenden Kosten auf jährlich bis zu 20 % des globalen Bruttoinlandproduktes belaufen könnten. Nach Erscheinen des „Stern Reviews“ im Jahr 2021, bekräftigte der Ökonom Nicholas Stern erneut, dass die Kosten des Nichthandelns die Kosten des Klimaschutzes um ein Vielfaches übersteigen (siehe "<a href="https://www.umweltbundesamt.de/daten/umwelt-wirtschaft/gesellschaftliche-kosten-von-umweltbelastungen">Gesellschaftliche Kosten von Umweltbelastungen</a>"). Ein „Weiter so“, bei dem Industrieländer ihre ressourcenintensive Wirtschaftsweise beibehalten und Entwicklungs- und Schwellenländer diese Wirtschaftsweise übernehmen, stellt keinen gangbaren Weg dar. Daher ist der Übergang zu einer Green Economy erforderlich, die sich innerhalb der ökologischen Leitplanken bewegt und das Naturkapital erhält.<br>Die Green Economy verbindet Ökologie und Ökonomie miteinander und zielt auf die Steigerung des gesellschaftlichen Wohlstandes. Ziel ist eine Wirtschaftsweise, die im Einklang mit Natur und Umwelt steht. Der Übergang zu einer Green Economy erfordert eine umfassende ökologische Modernisierung der gesamten Wirtschaft. Insbesondere Ressourcenverbrauch, Emissionsreduktion, Produktgestaltung sowie Umstellung von Wertschöpfungsketten müssen geändert werden. Die Förderung von Umweltinnovationen hat dabei eine zentrale Bedeutung.Umwelt- und ⁠Klimaschutz⁠ und wirtschaftliche Entwicklung sind keine Gegensätze, sondern bedingen einander. Die Steigerung der Energie- und Materialeffizienz ist ein entscheidender Faktor für die internationale Wettbewerbsfähigkeit der deutschen und europäischen Wirtschaft. Durch den Anstieg der Weltbevölkerung und die wirtschaftlichen Aufholprozesse in Entwicklungs- und Schwellenländern wird die Nachfrage nach Gütern und Dienstleistungen weiterwachsen. Diese Nachfrage lässt sich bei begrenzten natürlichen Ressourcen auf Dauer nur befriedigen, wenn es gelingt „mehr“ mit „weniger“ herzustellen. Das heißt, Wirtschaftswachstum und die Inanspruchnahme natürlicher Ressourcen zu entkoppeln. Daher wächst der Druck, Umwelt- und Effizienztechniken einzusetzen und fortzuentwickeln.Besonders deutlich zeigen sich die wirtschaftlichen Chancen des Klima- und Umweltschutzes am Beispiel der GreenTech Leitmärkte. GreenTech Leitmärkte sind Bereiche der Wirtschaft, die in besonderem Maße zu Umwelt-, Klima- und Ressourcenschutz beitragen. Es gibt sieben Leitmärkte, davon tragen vier besonders zum wirtschaftlichen Wachstum und Beschäftigung bei: Energieeffizienz, erneuerbare Energien, nachhaltige Mobilität, Ressourcennutzung und Kreislaufwirtschaft. Potenzialabschätzungen zufolge wird sich die globale Bruttowertschöpfung der GreenTech-Branche von 1,02 Billionen Euro im Jahr 2022 auf 4,1 Billionen Euro im Jahr 2045 erhöhen. Deutschland gehört heute – auch wegen seiner ambitionierten Umwelt- und Klimapolitik - zu den weltweit führenden Anbietern von GreenTech Produkten und Dienstleistungen.Die globale Konkurrenz für GreenTech verstärkt sich zunehmend. Deutschland gehörte im Zeitraum 2010 bis 2023 nach den USA und Japan zu den innovativsten Ländern weltweit gemessen an Patentanmeldungen. Jedoch holte im gleichen Zeitraum China rasch auf und könnte bereits bald Deutschland überholen. Deutschland wird seine führende Rolle für GreenTech nur behalten können, wenn es weiterhin eine Vorreiterrolle im Umwelt- und Klimaschutz einnimmt und Innovationen systematisch fördert.Die Zahl der Beschäftigten, die im Bereich Umwelt-, Ressourcen- und Klimaschutz arbeiten, steigt stetig an. Im Jahr 2023 arbeiteten ca. 3,4 Millionen Erwerbstätige in diesen Tätigkeitsfeldern⁠. Arbeitsplätze entstehen beispielsweise in den Bereichen der energetischen Gebäudesanierung, den Erneuerbaren Energien, und der Kreislaufwirtschaft. In immer mehr Tätigkeitsfeldern sind Klimaschutz und Ressourcenschonung relevante wirtschaftliche Größen, die zu Innovationen und Arbeitsplätzen führen. Dies bedeutet es gibt klassische Umweltschutzberufen (z.B. in Klärwerken). Darüber hinaus wächst die Anzahl an Erwerbstätigen, die sich in ihren Berufen auch um Umwelt, Klima und Ressourcen bemühen (z.B. in der nachhaltigen Mobilität).Umweltbelastungen verursachen hohe gesellschaftliche Kosten, zum Beispiel durch umweltbedingte Gesundheits- und Materialschäden, Ernteausfälle oder die Kosten des Klimawandels. Eine ambitionierte Umweltpolitik verringert diese Kosten.Grundsätzlich sollten Umweltkosten internalisiert, das heißt den Verursachern angelastet werden. Bisher geschieht dies nur unzureichend. Daher erhalten die Verursacher keine ausreichenden ökonomischen Anreize die Umweltbelastung zu senken. Außerdem sagen die Preise ohne vollständige Internalisierung der Umweltkosten nicht die ökologische Wahrheit. Dies verzerrt den Wettbewerb und hemmt die Entwicklung und Marktdiffusion umweltfreundlicher Techniken und Produkte. Vor allem in sehr umweltintensiven Bereichen wie dem Energie- und Verkehrssektor ist es wichtig, die entstehenden Umweltkosten stärker in Rechnung zu stellen. Dies würde den Ausbau der erneuerbaren Energien fördern, die Energieeffizienz erhöhen und wesentlich zu einer nachhaltigen Mobilität beitragen.Zur Schätzung der Umweltkosten veröffentlicht das Umweltbundesamt regelmäßig dieMethodenkonvention(nur in englischer Sprache verfügbar). Sie beinhaltet Kostensätze u.a. für die ⁠Emission⁠ von Treibhausgasen, Luftschadstoffen und Lärm, und gibt methodische Empfehlungen für die Ermittlung von Umweltkosten.Ein wichtiger Anwendungsbereich von Umweltkosten ist die Gesetzesfolgenabschätzung. Die Anwendung von Umweltkosten kann die Bundesministerien dabei unterstützen die Folgen eines Gesetzes ausgewogen und wissenschaftlich fundiert abzuwägen, wie das Umweltbundesamt es in seinemPositionspapierempfiehlt.Nutzen und Kosten des Umweltschutzes in UnternehmenKeine Frage, Umweltschutz ist nicht zum Nulltarif zu haben. Meist ist aber der Nutzen höher als die Kosten. So führen Investitionen in integrierte Umweltschutztechniken und Effizienzmaßnahmen unter dem Strich vielfach zu erheblichen Kosteneinsparungen auf betrieblicher Ebene – etwa durch einen geringeren Material- und Energieverbrauch oder rückläufige Entsorgungskosten. Hinzu kommen geringere Abhängigkeiten von Rohstoff- und Energiepreise und zahlreiche weitere Vorteile des Umweltschutzes auf Unternehmensebene, die schwieriger zu quantifizieren sind: zum Beispiel höhere Attraktivität für Fachkräfte, mehr Transparenz, bessere Finanzierungsbedingungen oder eine geringere Wahrscheinlichkeit von Störfällen. Der Einsatz von Umwelt- und Energiemanagementsystemen bietet dabei die Möglichkeit, die wirtschaftlichen Chancen des betrieblichen Umweltschutzes systematisch zu nutzen und die betriebliche Umweltleistung kontinuierlich zu verbessern.

1 2 3 4 59 10 11