API src

Found 88 results.

Domestizierung von Nicht-Holz-Waldprodukten und Diversifizierung des Kakaosystems im Biosphärenreservat Bosumtwe-See, Ghana

Nitratauswaschung unter aufgeforsteten Flächen und Untersuchungen zum Zustand der Versauerung in der Tiefe im Wasserschutzgebiet Thülsfeld

Die Aufforstung von ehemals ackerbaulich genutzten Flächen in den Grundwasser-Einzugsgebieten des Oldenburgisch-Ostfriesischen Wasserverbandes (OOWV) wird als eine Maßnahme gesehen, die Emissionen aus der ackerbaulichen Bodennutzung dauerhaft zu vermindern. Dies betrifft vor allem Stickstoff in der Form von Nitrat aber auch die Hauptnährstoffe Phosphor und Kalium und die Begleitionen Chlorid und Sulfat. Bei der Anpflanzung von jungen Baumbeständen besteht anfangs nur eine geringer Stickstoffbedarf. Die Stickstoffvorräte des Bodens würden somit noch mehrere Jahre mit ihrem mobilisierten Nitratmengen das Grundwasser belasten. Deshalb muß gleichzeitig, neben der Anpflanzung der Baumbestände, ein Unterwuchs angepflanzt werden, der den überschüssigen Stickstoff des ehemaligen Ackerbodens verwertet. Zu dieser Vorgehensweise hatte sich der OOWV vor einigen Jahren bei der Umwandlung von Ackerflächen entschlossen. Ziel des Projektes ist es, in Sinne einer Erfolgskontrolle, die Entwicklung der Qualität des Sickerwassers unter den aufgeforsteten Flächen zu untersuchen. Dabei soll der Zustand der ungesättigten Zone bis in den Bereich des Kapillarsaumes berücksichtigt werden. Verschiedene Maßnahmen zur Vermeidung von negativen Entwicklungen, wie z.B. Aushagerung vor der Aufforstung oder Kalkung, werden diskutiert.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Arbuskuläre Mykorrhiza entlang einer Waldbodensequenz mit unterschiedlicher P-Verfügbarkeit

Das trade balance model (Leistungsbilanzmodell) postuliert, dass Pflanzen, die eine Symbiose mit Arbuskulären Mykorrhizapilzen (AM-Pilze) eingehen, desto mehr abhängiger von ihren Pilzpartner werden, je mehr die Phosphorverfügbarkeit sinkt. Daraus folgt, dass die Bedeutung der AM-Symbiose vermutlich in Ökosystemen mit einer geringen Phosphorverfügbarkeit steigt. Durch die Kombination, die AM-Gemeinschaft zu messen und die Phosphorpools im Boden genau zu berechnen, erwarten wir, einen komplett neuen Einblick darauf zu bekommen, zu welchen P-Pools Schlüsselarten wie AM-Pilze Zugang haben. Darüber hinaus erwarten wir neue Ergebnisse über die Diversität und Abundanz der AM-Pilze in diesem für diese Organismusgruppe 'nicht-klassischen' Ökosystem Buchenwald. Wir stellen die Hypothese auf, dass AM-Pilze, als Hauptvertreter der Phosphoraufnahme bei vielen Pflanzen in Abundanz und Diversität im Unterwuchs (sowohl im Boden als auch in den Wurzeln) entlang einer graduellen Phosphorabnahme zunehmen, und dass sie daher zunehmend zu einem Phosphorrecycling beitragen. Für dieses Ziel beabsichtigen wir die AM-Pilz Abundanz (Hyphenlänge und Wurzelkolonisierung) zu messen und zusätzlich dazu die AM-Pilz-Diversität mittels Pyrosequenzierung. Dies kann möglicherweise dazu animieren, andere 'nicht-klassische' Ökosysteme zu untersuchen, in denen sich eventuell auch eine unbekannte hohe AM-Pilz-Diversität verbirgt. Ein zusätzliches Gewächshausexperiment wird es uns ermöglichen, die Höhe der Phosphoraufnahme der Pflanze über die AM-Hyphen zu quantifizieren, was nach unserer Kenntnis noch nie in diesen Ökosystemen gemacht wurde.

Erosionsprozesse in degradierten Arganbeständen in Südmarokko

Boden und Vegetation endemischer Arganbestände in Marokko werden durch Expansion und Intensivierung der Agrarwirtschaft sowie Überweidung zunehmend degradiert. Überschirmte Flächen nehmen ab, unbedeckte Flächenanteile zwischen den Arganien nehmen zu. Infolge verminderter Infiltration steigen Oberflächenabfluss- und Bodenabtragsraten stark an. Auf den degradierten Böden kann sich nur lückenhafter Unterwuchs (Krautige und Gras) und kein Jungwuchs mehr ausbilden. Durch Untersuchungen verschieden stark degradierter Arganbestände werden in diesem Vorhaben Grenzwerte herausgearbeitet, ab denen bodenerodierende Prozesse initiiert werden, sowie solche, ab denen von einer Dynamisierung der Prozesse, insbesondere Rinnen- und Gully-Erosion, auszugehen ist. Dazu werden in drei Testgebieten im Hohen und Anti-Atlas eingezäunte Aufforstungsflächen mit ungeschützten Flächen auf verschiedenen Hangneigungen verglichen. Die Entwicklung der Bestandsdichten wird mit hochauflösenden CORONA-Satellitenbildern aus dem Jahr 1968 und großmaßstäbigen Luftbildern von 2017/18 quantifiziert, welche mit unbemannten Fluggeräten (UAVs) aufgenommen werden. Die Wuchsform der Bäume wird mit Structure from Motion (SfM)-Verfahren (3D-Modelle aus Multikopter-Aufnahmen) dokumentiert und klassifiziert. Untersuchungen zur Korngrößenverteilung, Aggregatstabilität, organischen Bodensubstanz und Bodennährstoffen sollen hypothesengeleitet den - mit steigendem Abstand der Bäume - sinkenden Einfluss der baumüberschirmten Fläche auf die erweiterten Zwischenbaumflächen aufzeigen. Mit Beregnungsversuchen und Infiltrationsmessungen werden Erodibilität und Infiltrationsvermögen der Zwischenbaumflächen in verschiedenen Degradationsstadien untersucht. Der Sedimentaustrag aus linearen Erosionsformen wird durch ein SfM-Monitoring mittels 3D-Modellen quantifiziert. Steinbedeckung und Viehwege lassen sich aus den selbst erstellten Luftbildern ermitteln. Viehzählungen und Interviews mit Schlüsselinformanten ergänzen die Kenntnisse über den Beweidungsdruck durch Schafe und Ziegen auf die Arganbestände. Anhand der Untersuchungen zur Degradation von Bestandsdichten, Zwischenbaum- und baumüberschirmten Flächen können die Arganbestände in mit Werten unterfütterte Stabilitätsklassen unterteilt werden. Die durch das Multi-Methoden-Konzept erarbeiteten Grenzwerte zeigen die Dynamisierung der Bodenerosionsprozesse unter Arganbeständen und belegen, dass bestimmte Erosionsprozesse verschiedenen Degradationszuständen der Fläche sowie unterschiedlichen Bestandsdichten zugeordnet werden können. Dies ist eine notwendige Voraussetzung für die nachhaltige Bewirtschaftung der Arganbestandsflächen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Langfristige Änderungen von Phänologie und genetischer Diversität in den Biodiversitäts-Exploratorien: ein Vergleich heutiger Pflanzen mit historischer Belegen

Anthropogene Umweltveränderung beeinflussen die Phänologie und genetische Diversität von Pflanzen, mit weitreichenden Konsequenzen für ökologische Lebensgemeinschaften und die Evolution. Langzeitdaten solcher Veränderungen sind jedoch selten. Herbarien bieten die seltene Möglichkeit für Langzeitstudien über Phänologie und genetische Diversitätsveränderungen, vor allem da neue genomische Hochdurchsatzmethoden neuerdings auch eine Analyse historischer Proben von Nicht-Modellarten erlauben. Wir schlagen ein Forschungsprojekt vor, dass die Langzeitperspektiven von Herbarien mit den Stärken der Biodiversitätsexploratorien verbinden und die Phänologie und genetische Diversität heutiger Pflanzen in der Biodiversitätsexploratorien mit der von historischen Belegen der gleichen Arten aus den gleichen Regionen vergleichen soll. Wir werden uns auf frühblühende Pflanzen im Laubwald-Unterwuchs konzentrieren, da diese Arten eine deutliche, zeitlich begrenzte Blühperiode haben, und somit besonders geeignet zur Untersuchung phänologischer Veränderungen, sowie des Einflusses der Waldnutzung auf die Phänologie, sein sollten. Unser Projekt wird Feldbeobachtungen mit dem Studium naturwissenschaftlicher Sammlungen und cutting-edge Methoden der Herbariumgenomik verbinden um (1) eine umfassende Untersuchung der Blühphänologie aller frühblühenden Pflanzenarten in Wald-EPs durchzuführen und den Einfluss der Waldnutzung auf die Blühphänologie zu testen, sowie (2) mehrere grosse Herbaria nach Belegen der gleichen Pflanzenarten aus den gleichen Regionen zu durchsuchen, um langfristige Trends in der Blühphänologie, sowie den Einfluss des Klimas auf die Phänologie zu testen und die aktuellen Phänologie daten in einen historischen Kontext stellen zu können. Darüberhinaus wollen wir eine neue genomische Hochdurchsatzmethode zur Untersuchung historischer Herbarbelege, hyRAD-hybridization capture using RAD probes, etablieren und austesten, und (4) diese Methode dann dazu verwenden, um die genetische Diversität der heutigen Pflanzen im Laufwaldunterwuchs mit der ihrer Vorfahren aus den gleichen Regionen zu vergleichen. Unser Projekt wird die erste umfassende Unterschung von Pflanzenphänologie, sowie die erste Analyse der genetischen Diversität von Waldpflanzen in den Biodiversitätsexploratorien beinhalten. Vor allem bietet es erstmals eine Langzeitperspektive, und den ersten Versuch eines Vergleichs heutiger mit historischer Biodiversität in den Biodiversitätsexploratorien.

Diversitätsförderndes Pflegemanagement in Photovoltaik-Freiflächenanlagen

Photovoltaik-Freiflächenanlagen (PV-FFA) sind flächenwirksame Bauwerke, deren Unterwuchs gepflegt werden muss. Das Projekt untersucht in zwei Regionen Deutschlands die Auswirkungen unterschiedlicher Pflegemanagementvarianten hinsichtlich ihrer Effekte auf verschiedene Artengruppen und ökologische Funktionen. Darauf aufbauend wird eine evidenzbasierte Entscheidungshilfe für diversitätsfördernde Pflegemanagementkonzepte für PV-FFA erarbeitet.

Mittelwald

Auf zwei Versuchsflaechen wird diese historische Betriebsform in ihrer urspruenglichen Art betrieben. Ziel ist die Schaffung eines Anschauungs- und Studienobjektes. Daneben werden verjuengungsoekologische Fragen untersucht. Ornithologische und wildbiologische Begleituntersuchungen werden durchgefuehrt. Es wird untersucht: Zusammenhang zwischen Eichen-Naturverjuengung und Oberholzvorrat; Entwicklung der Naturverjuengung nach Lichtbedarf der Baumarten; zahlenmaessige Entwicklung nach Art, Lichtbedarf und Oberholzvorrat; Ausschlagsfaehigkeit der Stoecke im Unterholz nach Baumart, Alter des Stockes und Vitalitaet des stehenden Individuums vor der Nutzung; Entstehungsart und Ueberleben der Ausschlaege; Biomasse der Unterschicht ueber die Umtriebszeit; Kronenentwicklung und Vorratsentwicklung des Oberholzes ueber die Umtriebszeit.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Kernprojekt 5: Pflanzen

Das Kernprojekt 5 - Pflanzen - wird weiterhin wichtige Hintergrundinformationen für die anderen Kern- und Beitragsprojekte liefern und die grossen Multi-Site Experimente unterstützen. Dazu werden wir das Monitoring der Vielfalt und Abundanz der Gefäßpflanzen in allen Wald- und Grünland-EPs fortsetzen. Im neuen Multi-Site-Experiment in Wiesen und in der krautigen Vegetation im neuen Multi-Site-Experiment in Wäldern werden Pflanzenvielfalt, -abundanz und -produktivität weiter gemonitored. Darüber hinaus werden wir die Biomasseproduktion in allen Grünland-EPs und im Unterwuchs aller Wald-EPs als wichtige Ökosystemleistung monitoren und Informationen zu den verschiedenen Nutzungswerten von Pflanzenarten (z. B. medizinisch, als Baumaterial, Energie, Zierpflanzen) als weitere wichtige Ökosystemleistung zusammenstellen. Wir bieten Daten zur intraspezifischen Variation der funktionalen Merkmale der Pflanzen und berechnen auf Grundlage dieser individuellen Merkmale für jedes Diagramm die funktionalen Diversitätsmaße. Darüber hinaus werden wir Klima- und Landnutzungsdaten verwenden, um extreme Klima- oder Landnutzungsereignisse als Abweichungen von langfristigen Durchschnittswerten zu identifizieren und deren Auswirkungen auf die Pflanzenvielfalt zu analysieren. Schließlich werden wir langfristige Änderungen in der Vegetationszusammensetzung in Bezug auf Landnutzungsänderungen, Klima und Waldstruktur analysieren. Insgesamt wird dieses Projekt Daten und Erkenntnisse zu allen Untersuchungsflächen liefern, die für alle anderen Projekte wichtig sind.

Gefiederte Rückkehrer

Zum Gebärdenvideo Die nur locker mit Gehölzen durchsetzten Flächen bieten Vögeln wie dem Neuntöter ideale Brut- und Aussichtsplätze. Er hat eine auffällige schwarze Gesichtsmaske und ist vor allem durch sein Verhalten bekannt, Beutetiere auf Dornen aufzuspießen oder in Astgabeln zu klemmen. Der Wald nimmt inzwischen mehr als zwei Drittel des Geländes ein. Die Mehrzahl der im Natur-Park festgestellten Vogelarten bevorzugt parkartige Waldbereiche. Hierzu gehört auch die Nachtigall. Der Ende April aus Afrika kommende eher unscheinbare Zugvogel fühlt sich in dem Mosaik aus dichtem Gebüsch und Offenflächen wohl. Die Ankunft wird von intensivem melodischem Reviergesang begleitet, der auch nachts zu hören ist. Aufgrund der dichten Besiedlung der Stadt gilt Berlin als Hauptstadt der Nachtigallen. Vögel haben sich ihrem Lebensraum angepasst. Die Schnabelform verrät, wovon sie sich ernähren. Die bunten Stieglitze lieben Samen aller Art. Die Hauptnahrung der Nachtigall sind Insekten. Sie ist für ihren Gesang bekannt. Spechte hämmern Löcher in Bäume, um Insekten zu finden und Nisthöhlen zu meißeln. Gleichzeitig dient das Trommeln der Reviermarkierung. Die Nahrung des Turmfalken besteht hauptsächlich aus Mäusen. Auffällig ist sein weiß-schwarzer Kopf mit roter Gesichtsmaske. Die braunen Flügel ziert ein gelbes Band, die Spitzen sind schwarz-weiß gemustert. Der spitze Schnabel ist, wie bei Körnerfressern üblich, kegelförmig. Als Nahrungsbiotop mögen sie wilde ungenutzte Flächen mit vielen Stauden. Außerhalb der Brutzeit schließen sie sich zu Gruppen zusammen. Der Stieglitz gehört zur Familie der Finken und ist etwas kleiner als ein Spatz. Er ernährt sich bevorzugt von verschiedenen Distelsamen, weshalb er auch Distelfink genannt wird. Der zunehmende Verlust an Brachflächen raubt ihm Lebensraum und Nahrungsquelle. „Wildwuchs“ an Wegrändern, in Grünanlagen und privaten Gärten sind ein kleiner Beitrag ihn zu schützen. Ihr betörender Gesang ist von April bis Juni hörbar, aber sie ist selten zu entdecken. Verborgen lebt sie im Unterholz, in Parks und auf Friedhöfen. Der Vogel ist unauffällig braun-grau, den Schwanz prägen rostbraune Farbnuancen. Der zierliche Schnabel ist für die Aufnahme von Insekten und Würmern geeignet. Die Nachtigall ist etwa so groß wie ein Spatz und ist mit den Fliegenschnäppern verwandt. Sie ist ein Zugvogel und kommt im April aus ihrem Winterquartier in Afrika zurück. Eine naturnahe Pflege, wie das Belassen von Unterholz, Kraut- und Falllaubschicht, trägt zu ihrem Schutz bei. Charakteristisch ist die schwarz-weiß-rote Färbung seines Gefieders. Er hat einen kräftigen, kantigen Meißelschnabel, der fast so lang ist wie der Kopf. Zwischen Schnabel und Hirnschädel befindet sich bei den Spechten eine Art beweglicher “Stoßdämpfer”, der die Erschütterung abfedert, die beim Zimmern der Spechthöhle oder beim Trommeln entsteht. Der Buntspecht lebt dort, wo es viele Bäume gibt. Er hat einen typischen Körperbau, der an das Leben an senkrechten Strukturen angepasst ist. Anders als die meisten Vögel, die drei Zehen nach vorn und eine Zehe nach hinten haben, besitzt der Specht sowohl vorn als auch hinten zwei Zehen. Sie ermöglichen ihm, sich gut festzuklammern. Die Schwanzfedern sind besonders stark und stabil ausgebildet. Dadurch ist die Stützfunktion am Stamm gewährleistet. Es kommt vor, dass Buntspechte auch an Hausfassaden hämmern. Senkrechte Kanten wie Hausecken, an denen sie wie an Bäumen hinauf- und hinunterklettern können, kommen ihrer Lebensweise entgegen. Nahe liegt, dass sie bei Klopfversuchen den hohlen Klang gedämmter Fassaden mit dem Klang des gewohnten Totholzes gleichsetzen, das ihnen als Nahrungsquelle und Wohnstätte dient. Die Vögel sind braun gemustert, wobei die Männchen einen grauen Kopf und graue Schwanzfedern haben, die dunklen Augen sind gelb umrandet. Der hakenförmige Schnabel ist wie bei allen Falken mit einem „Falkenzahn“ ausgerüstet. Damit tötet er die Beute mit nur einem Biss. Manchmal lässt sich der schlanke, taubengroße Greifvogel an seinem Rüttelflug erkennen. Zum Jagen benötigt er freie Flächen mit niedrigem Bewuchs. Er brütet an Gebäuden, bevorzugt an Türmen. Der Turmfalke gehört in Deutschland zu den kleinen Greifvögeln. Er zählt als ursprünglicher Felsbewohner zu den Gewinnern der Urbanisierung. Türme und hohe Häuser haben ihm einen neuen Lebensraum eröffnet. Vor allem das Vorhandensein von Beutetieren beeinflusst, wo er sich ansiedelt. Und die sind in Berlin reichlich zu finden. Jedoch sind natürliche Nistmöglichkeiten an Gebäuden wie Mauernischen und -löcher durch Sanierungen und Neubauten immer weniger zu finden. Daher werden gezielt in öffentlichen Gebäuden Nisthilfen eingebaut. Prominente Gebäude, wie die Rathäuser von Schöneberg, Pankow, Neukölln und Charlottenburg zeugen davon. Mehr als 70 Prozent der Berliner Turmfalkenpaare bezieht inzwischen die von Menschenhand bereit gestellten Kinderstuben!

WD 8 - 126/19 Einzelfragen zur Photosynthese von C3- und C4-Pflanzen

Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 3 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Einzelfragen zur Photosynthese von C3- und C4-Pflanzen 1. C3- und C4-Pflanzen „C3-Pflanzen betreiben unter normalen Temperatur- und Lichtverhältnissen Photosynthese. Bei heißem und trockenem Wetter schließen sich die Spaltöffnungen, wodurch die Photosynthese- leistung sinkt. Bei normalen Temperatur- und Lichtverhältnissen ist der Grundtypus der Photosynthese, der in den sogenannten C3-Pflanzen stattfindet, am effektivsten. Bei heißem und trockenem Wetter schließen sich jedoch die Spaltöffnungen. Dann sind C4- bzw. CAM-Pflanzen im Vorteil. Bei C3-Pflanzen wird CO2 im Calvin-Zyklus bei der RuBisCO-Reaktion an Ribulose-1,5-bisphos- phat fixiert. Dabei entsteht eine instabile Zwischenstufe, die in zwei stabile Moleküle 3-Phospho- glycerat (3-PGA) zerfällt. 3-PGA ist aus drei Kohlenstoffatomen aufgebaut, daher der Name C3- Pflanzen. 3-PGA wird im Calvin-Zyklus weiter umgesetzt. Der überwiegende Teil höherer Pflanzen gehört zu den C3-Pflanzen. Um sich an Standort- bzw. Klimabedingungen optimal anzupassen, haben sich zudem besondere Formen der CO2-Fixierung entwickelt (C4- und CAM-Pflanzen).“ BMBF (2019). C3-Pflanzen. https://www.pflanzenforschung.de/index.php?cID=7812 „C4-Pflanzen binden CO2 besser als C3-Pflanzen. Sie haben sich an wärmere Regionen mit höhe- rer Lichteinstrahlung, also tropisches und subtropisches Klima angepasst. Normalerweise schließen Pflanzen bei hoher Umgebungstemperatur ihre Stomata, um Wasserver- luste durch Transpiration in Grenzen zu halten. Dadurch wird allerdings die Aufnahme von CO 2 für die Photosynthese erschwert. C4-Pflanzen haben daher einen Mechanismus entwickelt, um selbst geringste Mengen CO2 nutzen zu können. Im Gegensatz zu C3-Pflanzen besteht das erste Zwischenprodukt der Photosynthese bei C4-Pflan- zen – Oxalacetat - aus vier Kohlenstoff-Atomen. Mithilfe des Enzyms PEP-Carboxylase wird CO2 besonders effektiv gebunden. WD 8 - 3000 - 126/19 (26.09.2019) © 2019 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Einzelfragen zur Photosynthese von C3- und C4- Pflanzen C4-Pflanzen können bei hoher Lichteinstrahlung und hoher Temperatur in kürzerer Zeit mehr Biomasse aufbauen als C3-Pflanzen. Entsprechend sind C4-Pflanzen vorwiegend an trockenen Standorten zu finden. Vor allem Gräser und Nutzpflanzen, wie Amarant, Hirse, Mais und Zucker- rohr nutzen die C4-Photosynthese.“ BMBF (2019). C4-Pflanzen. https://www.pflanzenforschung.de/index.php?cID=7812 2. Vorkommen der C4-Photosynthese im Pflanzenreich „Nur etwa drei Prozent der heute lebenden Gefäßpflanzen betreiben C4-Photosynthese. Da diese jedoch so effizient ist, machen sie ungefähr 25 Prozent der gesamten, auf dem Land betriebenen Photosyntheseleistung aus. Bekannte C4-Pflanzen sind Mais, Zuckerrohr, Amarant, Hirse und Chinaschilf. Die meisten gehören zu den Gräsern, gefolgt von Seggen. Doch auch bei einer Reihe von Zweikeimblättrigen gibt es diesen Stoffwechselweg, insbesondere bei den Fuchsschwanzge- wächsen und anderen Nelkenartigen, bei Wolfsmilchgewächsen und vereinzelt bei Windenge- wächsen und Korbblütlern. C4-Pflanzen wachsen schneller als C3-Pflanzen, bilden also in kürze- rer Zeit mehr Biomasse, was ihren landwirtschaftlichen Nutzen gegenüber anderen Pflanzen er- höht. Die C4-Photosynthese ist aus evolutionsbiologischer Sicht der jüngere und modernere Pho- tosynthesetyp. Die C3-Photosynthese gibt es schon seit über zwei Milliarden Jahren. Die C4-Pho- tosynthese hat sich erst vor 30 Millionen Jahren entwickelt. (…) Das Enzym Ribulose-1,5-bisphosphat-carboxylase/oxygenase (RuBisCO) ist dafür verantwortlich, dass alle photosynthetisch aktiven Pflanzen Kohlenstoffdioxid aufnehmen können, weshalb es vermutlich das mengenmäßig häufigste wasserlösliche Protein der Erde ist. C4-Pflanzen können mit viel weniger RuBisCO genau so viel Kohlenstoff aus der Luft fixieren wie C3-Pflanzen. So bleibt ihnen mehr Energie zum Wachsen.“ BMBF (2013). Die Evolution von C4-Pflanzen vorhersagen. Kann man C3-Pflanzen in C4-Pflanzen umzüchten? https://www.pflanzenforschung.de/de/journal/journalbeitrage/die-evolution-von-c4- pflanzen-vorhersagen-kann-man-c3-p-10069 C4-Pflanzen sind bei Wasserknappheit, hohen Temperaturen und Sonneneinstrahlung C3-Pflan- zen in ariden Klimazonen überlegen. So betreiben etwa 70 Prozent aller im Death-Valley-Natio- nalpark lebenden Arten eine C4-Photosynthese. Der Großteil aller C4-Gräser wächst in Regionen mit weniger als 30 Grad geographischer Breite. Seltener sind sie in kalten Regionen zu finden, wie z. B. in der borealen Zone zwischen dem 50. und 65. Breitengrad und in großen Höhenlagen. Es gibt einige kältetolerante C4-Pflanzen, die Frost sowie winterliche Temperaturen (−20 °C) überstehen können, beispielsweise C4-Gräser in den Anden. Vergleiche dazu: Rowan F. Sage, Ferit Kocacinar, David S. Kubien: C4 photosynthesis and tempe- rature. In: Raghavendra, Sage (Hrsg.): C4 photosynthesis and related CO2 concentrating mecha- nisms. 2011, S. 161–195. Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 3 Einzelfragen zur Photosynthese von C3- und C4- Pflanzen Unklar ist, warum es - bis auf ein paar wenige Ausnahmen - keine Bäume mit einer C4-Photosyn- these existieren. Rowan F. Sage schreibt dazu in einem Aufsatz aus dem Jahr 2017: "For reasons that are not fully understood, the C4 pathway is absent in trees, with the exception of a few rare species in Hawaii." Auf Hawaii existieren demnach nur vier Arten, darunter Euphorbia olowaluana (bis 10 m) und E. herbstii (bis 8 m). Euphorbia olowaluana wächst in trockenen Wäldern auf Hawaii, bildet aber kein dichtes Blätterdach. E. herbstii wächst größtenteils als Baum im Unterholz anderer Bäume und verfügt über eine ausgezeichnete Schattentoleranz. Vergleiche dazu: Rowan F. Sage: A portrait of the C4 photosynthetic family on the 50th anniver- sary of its discovery: species number, evolutionary lineages, and Hall of Fame. In: Journal of Ex- perimental Botany. Band 68, Nr. 2, 2017, S. e12–e13, https://academic.oup.com/jxb/ar- ticle/68/2/e11/2932223 ) *** Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)

1 2 3 4 57 8 9