During the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), Hai24VE2 (24.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025), CTDs were deployed and sediment corers were retrieved at 99 stations in Kiel Bight in the southwestern Baltic Sea. Water column oxygen concentrations were determined using oxygen sensors attached to the CTD framework. At selected water depths, water samples were collected with Niskin bottles for the analysis of nitrate concentrations using an autoanalyzer. Short sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). Bottom waters were sampled from the supernatant water in the sediment cores. Solid phase sediment samples were analyzed for total organic carbon using an element analyzer. Porewater was extracted from the sediment cores using rhizones and analyzed for total alkalinity (titration), ammonium (photometer), sulfate (ion chromatography), hydrogen sulfide (photometer), dissolved iron (ICP-OES) and dissolved manganese (ICP-OES). The collected data will be used to (i) determine the spatial and temporal variability of hydrogen sulfide in bottom waters of the Kiel Bight, (ii) identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor, and (iii) establish an early warning system of sulfidic seafloor conditions for regional stakeholders in the Baltic Sea.
Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?
Reifen sind unverzichtbare Elemente der Mobilität. Wegen den einzigartigen Eigenschaften werden sie ausschließlich auf Basis von Kautschuken hergestellt. Dem organischen Polymer Kautschuk werden im Herstellungsprozess des Reifens noch weitere organische Materialien (wie z.B. Ruße oder Öle) zugemischt. Neben der Zugabe dieser Komponenten entstehen bei der Herstellung von Reifen entlang einer Mischerlinie und der anschließenden Weiterverarbeitung (bspw. Reifenheizpressen) allerdings auch volatile organische Komponenten (VOCs). Da momentan kein Material bekannt ist, welches die Reifen - Kautschuke ersetzen kann, ist es erforderlich, die Emission von VOCs bei der Reifenherstellung weitestgehend zu minimieren. Die Aufgabe des zur Förderung beantragten Vorhabens ist die Entwicklung einer nachhaltigen und Ressourcen schonenden Behandlung der VOC-haltigen Abgase. Die bislang eingesetzten Technologien (insbesondere Regenerative Nachverbrennung, ggf. mit vorheriger Aufkonzentration der Abgase) erfüllen diese Anforderungen nicht. Sie verursachen nicht nur unmittelbare Kohlendioxidemissionen durch Einsatz von fossilen Brennstoffen, sondern erweisen sich in der industriellen Praxis als betrieblich nachteilig bzw. anfällig. Der zur Förderung beantragte Ansatz ist prozessintegriert, nutzt ohnehin im Mischprozess eingesetzte Stoffströme als Adsorbenzien, kommt ohne fossile Brennstoffe aus und vermeidet betriebliche Probleme bisher eingesetzter Technologien. Mit dem Verfahren lassen sich somit bspw. die Kosten für Energie und CO2-Zertifikate deutlich reduzieren.
Das Gesamtziel des Vorhabens besteht in der Reduktion der Emission insbesondere neu aufkommender Schadstoffe aus NawaRo-Dämmstoffen. Für einige dieser Stoffe sind noch keine eindeutigen Wege der Generierung identifiziert worden. Dies gilt insbesondere für neu aufgekommene Stoffe wie VVOC. Die Entwicklung von Minderungsmaßnahmen steht folglich zumindest zum Teil noch aus. Ziel des Projektes ist es daher, VOC- und VVOC-Emissionen weiter zu senken, um Dämmstoffen aus nachwachsenden Rohstoffen mehr Verwendungsmöglichkeiten zu eröffnen. Als Hauptkomponenten wurden in Vorarbeiten organische Säuren, Aldehyde, Alkohole und andere, meist polare Verbindungen sowie SVOC identifiziert. Um die zur Reduzierung dieser Emissionen sinnvollen Entwicklungsschritte definieren zu können, fehlen zum Teil vertiefte Kenntnisse zu deren Entstehung aus Dämmstoffen aus nachwachsenden Rohstoffen. Dies gilt insbesondere für Substanzen wie Alkohole, VVOC und SVOC (Semi Volatile Organic Compounds). Außerdem sind viele dieser Dämmstoffe mit Flammschutzmitteln ausgerüstet. Inwieweit das das Emissionsverhalten möglicherweise indirekt beeinflusst, z.B. durch deren Einfluss auf den Feuchtehaushalt, ist nicht bekannt. Aus den bestehenden und zusätzlich gewonnenen Erkenntnissen zur Generierung der Emissionen sollen mindernde Veränderungen im Herstellprozess abgeleitet werden. Dabei kann auf Erkenntnisse aus dem Bereich der Herstellung von Holzwerkstoffen aufgebaut werden. Eine weitere Möglichkeit der Emissionsminderung ergibt sich aus dem Zusammenwirken verschiedener Materialien, z.B. Dämmstoffen und Folien. Vorkenntnisse über das Diffusionsverhalten von Wasserdampf und einiger weniger (V)VOC sind vorhanden, bedürfen aber einer Vervollständigung. Konkret soll daher die Möglichkeit dampfbremsender Folien, den Übergang solcher Stoffe in die Innenraumluft zu behindern, über die o.g. Stoffe hinaus geprüft werden.
Hintergrund: Obwohl Nanopartikel und Kolloide (NPC) als Vektoren für P-Verluste und P-Neuverteilungen in Waldsystemen fungieren, fehlen grundsätzlichen Erkenntnisse über den Zusammenhang zwischen steuernden Umweltfaktoren und dem Schicksal, Transport und der zusammensetzung von NPC und ihrer P-Beladung. Wir postulieren, dass hydrologisch bedingte NPC-Verluste und -umverteilungen eine dreifache Gefahr für das langfristige biogeochemische Recycling von P in Waldökosystemen und damit die Ökosystemernährung darstellen. Projektziel: Aufklärung der Bedeutung und Steuerung von NPC-Verlusten und -umverteilungen für die langfristige Effizienz des P-Recycling in Waldökosystemen. Projekt-Hypothesen: Mobile Kolloide in Waldökosystemen entstammen hauptsächlich dem organischen Oberboden (alle WPs), (ii) Laterale Flüsse vom kolloidalen P während Starkregenereignissen begrenzen langfristig die maximale P-Wiederverwertungseffizienz von Waldökosystemen (WP1), (iii) P ist überwiegend mit organischen Kolloiden assoziiert und größtenteils bioverfügbar, was eine weitere Limitierung der P-Wiederverwertung im Wald darstellt (WP2), (iv) Die Kolloidverlagerung in Wäldern führt zu P-reichen und P-armen Stellen (laterale Umverteilung) bzw. zu einem P-Transfer aus oberflächennahen organischen Horizonten zum mineralischen Unterboden und damit zu einer P-Festlegung in diesem Horizont (WP3), und (v) Abnehmende atmosphärische Einträge von organischen Säuren und Kalkung erhöhen den pH Wert und reduzieren das austauschbare bzw. gelöste Al3+ im Waldoberboden, was die Mobilisierung bzw. den Verlust von kolloidalem P fördert (WP4). Methodik: Wir werden die Konzentration und Zusammensetzung von Kolloiden in den Wasserproben i) aus den Streulysimetern, ii) aus dem lateralen Fluss in Bodeneinschnitte (trenches) und iii) aus den Oberläufen von Bächen an den Versuchsstandorten in Bad Brückenau, Conventwald, Vessertal und Mitterfels bestimmen. Die Kolloide werden mittels Feld Fluss Fraktionierung fraktioniert bzw. isoliert und in Kombination mit ICP-MS, TOC und TN Analyse, sowie TEM gekoppelt mit Energiedispersiver Röntgenspektroskopie charakterisiert. Aufgaben/Arbeitspakete: WP1: Entnahme von Wasserproben aus dem lateralen Fluss in Bodeneinschnitten (trenches) (mit Puhlmann/Weiler und Julich/Feger). Entsprechend unserer Hypothese sollte die Gesamtmenge von NPCs aus präferenziellen Fließwegen, dem lateralen Fluss und den Oberläufen der freigesetzten Menge aus der organischen Bodenoberschicht gleich sein. WP2: Untersuchung der Bioverfügbarkeit der NPC aus dem 'interflow' und den Oberläufen durch Inkubationsexperimente mit Enzymen um Phosphatester und Inositol-Phosphate nachzuweisen (mit Kaiser/Hagedorn/Niklaus). (Text gekürzt)
Troposphärische Aerosolpartikel sind oft in einer sehr simplen Art und Weise, als nicht-flüchtig und chemisch-inert, in Modellen beschrieben. Diese Annahmen werden durch die aktuelle Forschung in Frage gestellt, wonach die flüchtigen organischen Verbindungen (VOC) und sekundäre organische Aerosole (SOA) ein System bilden, das sich in der Atmosphäre durch chemische und dynamische Prozessierung entwickelt. Ein aktuelles Schlüsselproblem in der Atmosphärenchemie sind organische Partikel, welche in Modellen auf der Grundlage verfügbarer Parametrisierungen von Laborversuchen implementiert sind, die die SOA Bildung stark unterschätzen und nicht ausreichendend das Partikelwachstum vorhersagen. Differenzen zwischen den gemessenen und modellierten SOA-Konzentrationen deuten darauf hin, dass andere wesentliche SOA Quellen noch nicht identifiziert und charakterisiert sind. Zur Erklärung und Schließung dieser Lücke wurden Studien durchgeführt. So wurde gezeigt, dass das gasförmige Glyoxal deutlich zur SOA Masse durch Mehrphasenchemie beitragen kann. Solche Senken in der kondensierten Phase sind in der Lage, einen wichtigen Teil der fehlenden SOA Masse in Modellen, die oft als aqSOA bezeichnet wird, zu erklären. Jedoch implizieren Beobachtungen, dass es immer noch große Unsicherheiten in der SOA Bildung gibt. Herkömmliche aqSOA Quellen können offenbar nicht vollständig das fehlende SOA erklären. Weiterhin wurde gezeigt das, Multiphasenprozesse lichtabsorbierende partikuläre Verbindungen herstellen können. Die Bildung von solchen lichtabsorbierenden Spezies können neue photochemische Prozesse in Aerosolen und/oder in Gas/Partikel-Grenzflächen bewirken. Eine signifikante Menge an Literatur über photoinduzierten Ladungs- oder Energietransfer in organischen Molekülen existiert für andere Bereiche der Wissenschaft. Solche organischen Moleküle können Aromaten, substituierte Carbonyle und/oder stickstoffhaltige Verbindungen sein, welche allgegenwärtig in troposphärischen Aerosolen sind. Während die Wasserphotochemie aufgezeigt hat, dass viele dieser Prozesse, den Abbau von gelösten organischen Stoffen beschleunigen, ist nur wenig über solche Prozesse in/auf Aerosolpartikeln bekannt.Daher soll in PHOTOSOA, die Photosensibilisierung in der Troposphäre studiert werden, da diese eine wichtige Rolle bei der SOA-Bildung und Alterung spielen kann. Solche Photosensibilisierungen können neue chemische Pfade eröffnen, die bisher unberücksichtigt sind, obwohl sie die atmosphärische chemische Zusammensetzung beeinflussen können und so dazu beitragen die aktuellen SOA Unterschätzung abzubauen. Dieses Projekt zielt auf die Verringerung solcher Unsicherheiten, durch die Kombination von Laboruntersuchungen fokussiert auf die Chemie von Triplett-Zuständen von relevanten Photosensibilisatoren in verschiedenen Phasen und ihre Rolle bei der SOA-Bildung, ab. Die Grundlagenforschung zu diesen Prozessen ist erforderlich, um ihre troposphärische Bedeutung abschätzen zu können.
Reifen sind unverzichtbare Elemente der Mobilität. Wegen den einzigartigen Eigenschaften werden sie ausschließlich auf Basis von Kautschuken hergestellt. Dem organischen Polymer Kautschuk werden im Herstellungsprozess des Reifens noch weitere organische Materialien (wie z.B. Ruße oder Öle) zugemischt. Neben der Zugabe dieser Komponenten entstehen bei der Herstellung von Reifen entlang einer Mischerlinie und der anschließenden Weiterverarbeitung (bspw. Reifenheizpressen) allerdings auch volatile organische Komponenten (VOCs). Da momentan kein Material bekannt ist, welches die Reifen - Kautschuke ersetzen kann, ist es erforderlich, die Emission von VOCs bei der Reifenherstellung weitestgehend zu minimieren. Die Aufgabe des zur Förderung beantragten Vorhabens ist die Entwicklung einer nachhaltigen und Ressourcen schonenden Behandlung der VOC-haltigen Abgase. Die bislang eingesetzten Technologien (insbesondere Regenerative Nachverbrennung, ggf. mit vorheriger Aufkonzentration der Abgase) erfüllen diese Anforderungen nicht. Sie verursachen nicht nur unmittelbare Kohlendioxidemissionen durch Einsatz von fossilen Brennstoffen, sondern erweisen sich in der industriellen Praxis als betrieblich nachteilig bzw. anfällig. Der zur Förderung beantragte Ansatz ist prozessintegriert, nutzt ohnehin im Mischprozess eingesetzte Stoffströme als Adsorbenzien, kommt ohne fossile Brennstoffe aus und vermeidet betriebliche Probleme bisher eingesetzter Technologien. Mit dem Verfahren lassen sich somit bspw. die Kosten für Energie und CO2-Zertifikate deutlich reduzieren.
Die Holcim (Süddeutschland) GmbH ist spezialisiert auf die Herstellung und den Vertrieb von Baustoffen. Das Unternehmen bietet ein breites Sortiment an Zement, Gesteinskörnungen, Beton sowie Dienstleistungen für Bauvorhaben an. Der Prozess der Zementklinkerherstellung ist sehr energieintensiv und verursacht sowohl brennstoff- als auch rohstoffbedingte Emissionen. Letztere resultieren aus den chemischen Zusammensetzungen der verwendeten Rohstoffe wie Kalkstein, Sand, Ton und z.B. eisenhaltigen Zusatzstoffen. Neben Staub sind insbesondere gasförmige Abgaskomponenten, wie NO X , NH 3 und SO X , organische Verbindungen sowie Schwermetalle von Bedeutung. In der 17. BImSchV, der für Zementwerke maßgeblichen Immissionsschutzregelung, gibt es jedoch für eine Vielzahl von Parametern (SO X , organische Gesamtemissionen, NH 3 , Hg) die Möglichkeit, rohmaterialbedingte Ausnahmen von den allgemeinen Grenzwerten zuzulassen. Am Standort Dotternhausen gelten derzeit Ausnahmen für die Emissionsgrenzwerte von CO, VOCs und NH 3 , da bisher keine Reduzierung der rohstoffbedingten Emissionen implementiert ist. Zur Minderung von NO X -Emissionen wird im Zementwerk Dotternhausen aktuell das Verfahren der selektiven nichtkatalytischen Reduktion (SNCR) betrieben. Im Rahmen des Vorhabens soll im Zementwerk der HOLCIM Süddeutschland GmbH in Dotternhausen eine Anlage zur kombinierten Abgasreinigung errichtet werden. Damit sollen zum einen die Emissionen des Zementwerks deutlich reduziert (z.B. NO X , NH 3 , VOCs, CO) und zum anderen der fossile Energiebedarf für die Emissionsminderung in Zementwerken deutlich gesenkt werden. Die Anlage besteht aus einem Katalysator zur selektiven katalytischen Reduktion (SCR), der mit einem Oxidationskatalysator in einer Funktionseinheit kombiniert wird. Der Oxidationskatalysator wird erstmalig in der Zementindustrie eingesetzt. Der Einsatz von Oxidationskatalysatoren wird seit langem als vielversprechende Technologie für den Einsatz in der Zementindustrie gehandelt, aufgrund des hohen technischen Risikos aber bisher noch nicht eingesetzt. Durch diese Anlagenkombination werden zukünftig sowohl brennstoffbedingte als auch rohmaterialbedingte Emissionen eingespart und gezielt insbesondere NO X , NH 3 , organische Gesamtemissionen und besonders problematische Einzelverbindungen (z. B. Benzol, PAKs, PCB) sowie CO gemindert. So sollen bei Umsetzung des Projektes im Dauerbetrieb Emissionswerte für Ammoniak unterhalb der allgemeinen gesetzlichen Anforderungen eingehalten werden: 10 Milligramm pro Kubikmeter statt 30 Milligramm pro Kubikmeter für Ammoniak im Tagesmittel. CO wird nahezu vollständig zu CO 2 oxidiert. Zusätzlich werden die Emissionen organischer Verbindungen soweit reduziert, dass keine nach 17. BImSchV allgemein zulässige rohmaterialbedingte Ausnahme für organische Emissionen erforderlich ist und ein Wert unterhalb von 10 Milligramm pro Kubikmeter im Dauerbetrieb und allen Betriebszuständen eingehalten wird. Auch bei relevanten organischen Einzelkomponenten (z. B. Benzol, Dioxine/Furane, PCB) wird eine nahezu vollständige Zerstörung erwartet. Damit werden bei erfolgreicher Umsetzung des Projektes die Emissionen unterhalb des Emissionsniveaus der aktuell fortschrittlichsten Anlagen liegen. Ziel ist, nach erfolgreicher Umsetzung des Projektes auf die Inanspruchnahme rohmaterialbedingter Ausnahmen für NH 3 , organische Gesamtemissionen und CO verzichten zu können. Darüber hinaus kann bei der innovativen Technologiekombination aus selektiver katalytischer Reduktion und einem Oxidationskatalysator auf den Einsatz fossiler Energieträger komplett verzichtet werden. Die geplante Anlagenkombination ist auf andere Anlagen der Zementindustrie und ggf. auch auf Unternehmen anderer Branchen übertragbar, da es sich bei dem Ofenabgas der Zementklinkerproduktion um ein sehr herausforderndes Umfeld für die Anwendung abgassensibler Minderungstechniken handelt. Die Demonstration der Funktionsfähigkeit des Verfahrens kann daher Hürden für andere Bereiche abbauen helfen. Weiterhin ist davon auszugehen, dass auch eine Nachrüstung von Oxidationskatalysatoren als eigenständiges Element in Werken mit Low-Dust-SCR-Anlagen und ggf. auch anderen SCR-Varianten zur weitergehenden Reduktion von organischen und CO-Emissionen möglich ist. Branche: Glas und Keramik, Verarbeitung von Steinen und Erden Umweltbereich: Luft Fördernehmer: Holcim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2025 Status: Laufend
<p>Nach Wochen eher wechselhaften Sommerwetters sind mit der Hitzewelle auch die Ozonkonzentrationen angestiegen.</p><p>Das ist nicht ungewöhnlich, denn in ruhigem Sommerwetter mit intensiver Sonneneinstrahlung und hohen Lufttemperaturen steigt die Ozonproduktion. Ozon wird bei intensiver Sonneneinstrahlung durch komplexe photochemische Prozesse aus Vorläuferschadstoffen - überwiegend Stickstoffoxiden und flüchtigen organischen Verbindungen gebildet. Hält das Sommerwetter für mehrere Tage an, steigt die Ozonkonzentration Tag für Tag an und kann es auch zur Überschreitung der Informationsschwelle von 180 µg/m³, lokal gegebenenfalls auch der Warnschwelle von 240 µg/m³ kommen. Bei Ozonwerten über der Informationsschwelle besteht für besonders empfindliche Bevölkerungsgruppen ein Risiko für die menschliche Gesundheit. Bei Ozonwerten über dem Alarmschwellenwert von 240 µg/m³ besteht bei der gesamten Bevölkerung ein Risiko für die menschliche Gesundheit und es wird über die Medien gewarnt. In den letzten Tagen kam es vor allem in Nordrhein-Westfalen, Niedersachsen, Hessen und Rheinland-Pfalz zur Überschreitung der Informationsschwelle. Heute kann es nochmals zu einzelnen Überschreitungen dieser Schwelle kommen. Mit einem Luftmassenwechsel, der heute bereits von Nordwesten her beginnt, werden auch die Ozonkonzentrationen am Wochenende wieder sinken.</p><p>Grundsätzlich sind die <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/ozon">Ozonwerte</a> bei sommerlichem Wetter in den Nachmittagsstunden am höchsten. Wer empfindlich auf Ozon reagiert, sollte Sport und andere körperlich anstrengende Tätigkeiten möglichst in den Abend, besser noch in die frühen Morgenstunden legen. Dann ist die Belastung deutlich geringer. Die Wohnung sollte am besten morgens gelüftet werden und dann die Fenster bis zum Abend geschlossen bleiben. Leider bringt es nichts, den Sport vom Stadtpark in den Wald zu verlegen, denn die Ozonwerte sind außerhalb der Innenstädte oft deutlich höher. Die höchsten Ozonwerte werden regelmäßig am Stadtrand und in den angrenzenden ländlichen Gebieten gemessen. Denn die Vorläuferstoffe des Ozons (Stickoxide aus dem Verkehr und flüchtige organische Verbindungen aus Lösemitteln von Farben, Lacken, Klebstoffen oder Reinigungsmitteln) werden durch Wind aus der Stadt transportiert, wo sie zu Ozon reagieren. Dagegen wird Ozon in Innenstädten durch die Reaktion von Stickstoffmonoxid (NO) aus Autoabgasen mit Ozon abgebaut. Deshalb ist die Ozonbelastung in Innenstädten, wo viele Autos fahren, deutlich niedriger.</p><p>Aktuelle Werte und Prognosen für die nächsten zwei Tage gibt es <a href="https://www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten#/start?_k=qb2zq1">hier</a> und in der <a href="https://www.umweltbundesamt.de/themen/luft/luftqualitaet/app-luftqualitaet">UBA-App "Luftqualität"</a>. Mit unsere App können Sie sich jederzeit über die zu erwartende Ozonbelastung informieren und bei erhöhten Werten automatisch warnen lassen. Je nach Höhe der Belastung gibt die App Gesundheitstipps für Aktivitäten im Freien. Die App ist kostenlos und werbefrei und für die Betriebssysteme iOS und Android erhältlich.</p>
| Origin | Count |
|---|---|
| Bund | 1119 |
| Kommune | 2 |
| Land | 968 |
| Wissenschaft | 86 |
| Zivilgesellschaft | 38 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 1018 |
| Förderprogramm | 921 |
| Gesetzestext | 5 |
| Taxon | 1 |
| Text | 151 |
| Umweltprüfung | 1 |
| unbekannt | 101 |
| License | Count |
|---|---|
| geschlossen | 180 |
| offen | 1953 |
| unbekannt | 64 |
| Language | Count |
|---|---|
| Deutsch | 1966 |
| Englisch | 319 |
| Resource type | Count |
|---|---|
| Archiv | 70 |
| Bild | 6 |
| Datei | 125 |
| Dokument | 863 |
| Keine | 738 |
| Multimedia | 2 |
| Unbekannt | 2 |
| Webseite | 1289 |
| Topic | Count |
|---|---|
| Boden | 1394 |
| Lebewesen und Lebensräume | 1402 |
| Luft | 1982 |
| Mensch und Umwelt | 2197 |
| Wasser | 1995 |
| Weitere | 2170 |