Das Projekt "The European aeroemissions network (AERONET)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Antriebstechnik durchgeführt. One of the major problems that civil aeronautics will have to face over the next twenty or thirty years is to accommodate the predicted growth in demand of air transport without creating unacceptable adverse environmental effects. It is to be expected that new scientific results, increasing public concerns over the environment and future restrictive regulations with respect to aircraft emissions will force airline companies to take ecological considerations much more into account than it does at present. Consequently, for European aircraft manufacturers it is of high importance to react early and to guide their research and development resources into the most important and efficient direction. The aim of the AERONET project is to support coordination ' a postiori' of existing European and national projects or programmes dealing with the contribution of air traffic emissions to anthropogenic climate and atmospheric changes. For this purpose AERONET seeks to : - bring together experts from engine technology, atmospheric research and operations as well as programme responsible to exchange knowledge and opinions and to discuss necessary future actions on the basis of jointly defined goals and time scales, - produce competitive advantage for Europe through enhanced information echoing in the field of atmospheric effects of air traffic emissions, - strengthen a common European position in global technical and political discussions - support the Commission in identifying topics for the 5th Framework Programme, - identify gaps and help prepare a coordinated submission of proposals. European Dimension and Partnership: Europe is, beside the US, one of the two biggest aircraft manufacturers. One supposition for the economic success of European aircraft industry is not only to fulfill the existing regulations but, due to the long development times of 5-10 years and the long lifetimes of aircraft of more than 20 years, also to take the trend of future regulations development into account at a very early stage. This needs continuous and fast information exchange and discussions between atmospheric scientists, aircraft engineers and regulatory organisations. To be successful with an effort of this dimension, optimal coordination of national and European programmes in all three fields is required. Thus the network brings together representatives of all programmes and institutions concerned, helps to integrate activities through better information exchange, tries to identify the most urgent themes for R&D activities and intends to give recommendations for the Fifth Framework Programme. Potential Applications: Understanding the atmospheric impacts, the technical consequences and development perspectives, and the operational impacts as a whole is absolutely necessary to strengthen the European position in global regulatory committees on the on side and to gain competitive advantages for the European aircraft and airline industries on the other side. usw
Das Projekt "ALPCHANGE - Klimawandel und Auswirkungen in südösterreichischen Hochgebirgsräumen" wird vom Umweltbundesamt gefördert und von Technische Universität Graz, Institut für Fernerkundung und Photogrammetrie durchgeführt. ALPCHANGE beschreibt quantitativ die durch den Klimawandel verursachte Landschaftsdynamik in alpinen Regionen Südösterreichs. Dies geschieht durch die integrative und umfassende Analyse aus Beobachtungsdaten der vier Landschaftsparameter Permafrost, Gletscher, Schnee und Geomorphologie. Diese Parameter reagieren zeitlich unterschiedlich auf geänderte Umweltbedingungen und liefern so Informationen in verschiedenen Zeitebenen: Schnee unmittelbar, Gletscher und geomorphologische Strukturen innerhalb von Jahren bis Jahrzehnten bzw. Permafrost innerhalb von Jahrzehnten bis Jahrhunderten. Diese Zusammenhänge werden mittels eines umfassenden Monitoring-Netzwerkes in den Hohen Tauern durchgeführt zum ersten Mal in Südösterreich. Die Interdisziplinarität dieses Forschungsansatzes Glaziologie, Hochgebirgsgeographie, Geophysik, Atmosphärenphysik, Geologie versammelt viele nationale wie auch internationale Institutionen in einer Arbeitsgemeinschaft. Wissenschaftler verschiedener Institute an der Universität Graz bzw. der Technischen Universität Graz sind seit Jahrzehnten in den Forschungsbereichen Klima- und Umweltwandel aktiv. ALPCHANGE ist unter anderem auch aus jenen Initiativen entstanden, die zur Gründung des Wegener Zentrums für Klima und Globalen Wandel (WegCenter) führten.
Das Projekt "Biomass Fuell Cell Utility System (BIOCELLUS)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Objective: Energy from Biomass needs highly efficient small-scale energy systems in order to achieve cost effective solutions for decentralized generation especially in Mediterranean and Southern areas, and for applications without adequate heat consumer. Thus fuel cells are an attractive option for decentralized generation from biomass and agricultural residues but they have to meet at least two outstanding challenges: 1. Fuel cell materials and the gas cleaning technologies have to treat high dust loads of the fuel gas and pollutants like tars, alkalines and heavy metals. 2. The system integration has to allow efficiencies of at least 40-50 percent even within a power range of few tens or hundreds of kW. This proposal addresses in particular these two aims. Hence the first part of the project will focus on the investigation of the impact of these pollutants on degradation and performance characteristics of SOFC fuel cells in order to specify the requirements for appropriate gas cleaning system (WP 1-2). These tests will be performed at six existing gasification sites, which represent the most common and applicable gasification technologies. WP 3 will finally test and demonstrate the selected gas cleaning technologies in order to verify the specifications obtained from the gasification tests. The results will be used for the development, installation and testing of an innovative SOFC - Gasification concept, which will especially match the particular requirements of fuel cell systems for the conversion of biomass feedstock. The innovative concept comprises to heat an allothermal gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This so-called TopCycle concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.
Das Projekt "C3: Market inclusion of ecosystem services: A viable option to achieve sustainable land use in the tropics?" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Fachgebiet für Waldinventur und nachhaltige Nutzung durchgeführt. The concept of ecosystem services (ES) links ecosystem functioning and human wel-fare to achieve sustainable land use. However, the success of this concept will critically depend on sources to finance the provision of ES (possibly mobilized by means of markets for ES), on credibility of ES values and on willingness of ES providers to ac-cept financial compensation. Our proposal addresses these aspects: The first part investigates how the land use in Ecuador would change if ES were actually acknowl-edged as economic values. We will use and develop a risk sensitive economic modeling approach to integrate the uncertainty of expected economic values for ES. The aim is to explore how the uncertainty of ES values would affect investments into specific ecosystem types and the connected conversion processes from tropical forest lands to other land use types and vice versa. The second proposal part investigates the willing-ness to accept financial compensation for providing ES. In this part we adapt a risk-sensitive bioeconomic farm model that combines various productive but sustainable land management options to real farm situations. The farm level modeling builds upon the effects of risk compensation from diversified land use by means of a land use port-folio approach. It will be used to derive acceptable individual and thus effective conser-vation payments.
Das Projekt "Upwelling in the Atlantic sector of the Southern Ocean" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik, Abteilung Ozeanographie durchgeführt. Upwelling is an important process in setting the characteristic of the mixed layer. Upwelling also provides a pathway for gases, nutrients, and other compounds from the ocean's interior into the mixed layer and ultimately into the atmosphere. Since the upwelling velocities are small, they cannot be measured directly. Recently, Rhein et al. (2010) exploited the helium isotope disequilibria found in the equatorial eastern Atlantic to infer upwelling speeds, upwelling rates, and vertical heat fluxes between the mixed layer and the ocean's interior. The disequilibrium in the mixed layer is caused by upwelling of 3He-enriched water from the interior. The surplus 3He is introduced into the deep ocean by hydrothermal activities.A first survey of historical Helium isotope data in the Antarctic Circumpolar Current (ACC) and the Weddell Sea showed, that the mixed layer is also enriched with 3He, which in summer months is supplied by upwelling of water from below the mixed layer. Although the first estimates of upwelling velocities from the historical data set look promising, the present Helium data lack a sufficient resolution in the upper 200-300m to determine the horizontal and vertical He gradients, necessary for the compilation of the upwelling velocity and of the contribution of diapycnal mixing. Here we propose to take the historical He data, and a new dedicated He data sets to be taken in November 2010 - February 2011 during the POLARSTERN cruise ANT 27/2 and January- February 2012 during POLARSTERN cruise ANT28/3 to calculate upwelling speeds and -rates in the Weddell Sea and the ACC, as well as heat fluxes between the interior and the mixed layer.This proposal is part of the Cluster ' Eddies and Upwelling: Major Factors in the Carbon Budget ofthe Southern Ocean'
Das Projekt "Storage of hydrogen in hydrides" wird vom Umweltbundesamt gefördert und von Weierstraß-Institut für Angewandte Analysis und Stochastik durchgeführt. Hydrogen is the ideal synthetic fuel to convert chemical energy into electrical energy or into motive power because it is light weight, highly abundant and its oxidation product is vapor of water. Thus its usage helps to reduce the greenhouse gases and it conserves fossile resources. There is even a clean way to produce hydrogen by electrolysis of water by means of photo voltaics (SvW06, VSM05, PMM05). There are various possibilities to store the hydrogen for later use: Liquid and gaseous hydrogen can be stored in a pressure vessel, hydrogen can be adsorped on large surface areas of solids, and finally crystal lattices of metals or other compounds can be used as the storage system, where hydrogen is dissolved either on interstitial or on regular lattice sites by substitution (SvW06, San99). The latter process and its reversal is called hydriding respectively dehydriding. The subject of this proposal is the modeling and simulation of that process. The main problem of a rechargeable lithium-ion battery is likewise a storage problem, because in a rechargeable battery, both the anode and cathode do not directly take part in the electrochemical process that converts chemical energy into electrical energy, rather they act as host systems for the electron spending element, which is here lithium (Li). During the last month the applicant developed and exploited a mathematical model that is capable to capture the storage problem of an iron phosphate (FePO4) cathode, where the Li atoms are stored on interstitial lattice sites (DGJ07).
Das Projekt "A census of viruses through the drinking water cycle" wird vom Umweltbundesamt gefördert und von Charité - Universitätsmedizin Berlin, Campus Charité Mitte (CCM), Institut für Virologie durchgeführt. Waterbome viruses have a high but so far underestimated public health significance. In water monitoring and surveillance regulations, virus detection is until now not mandatory. This is reflected in the methodological repertoire available. To date, methods for detecting the various types of viruses in different types of waters (waste water, surface water, groundwater, drinking water) are insufficiently sensitive. Some of the most important waterborne viruses like noroviruses can only be detected by PCR methods. In the case of waterborne virus outbreaks, underlying circumstances and causes frequently cannot be clarified in the absence of reliable detection methodology. The same would apply to acts of biological crime or terrorism. It is thus of utmost importance to further develop methods for sensitive and reliable virus detection in different types of waters which are technically easy to accomplish in a short time, provide a sufficient concentration of a large range of viruses in a mall volume, have a high virus recovery rate, will not be too costly, and will deliver reproducible results. In this proposal methods for concentrating large volumes of water by which a large spectrum of viruses can be simultaneously detected in water samples will be developed in cooperation with individual project partners. After successful development and testing in the lab, the methods will be evaluated for its use in different waters and water treatment steps for quantitative and qualitative virus analysis.
Das Projekt "Climate indicators on the local scale for past, present and future and platform data management" wird vom Umweltbundesamt gefördert und von Philipps-Universität Marburg, Fachgebiet Klimageographie und Umweltmodellierung durchgeführt. Predicting future climate change is in itself already difficult, especially in such complex ecosystems as the Andean mountain rain and dry forest as well as the Paramo. The common tools to simulate global climate change are global circulation models (GCM). Because of their coarse resolution they are not able to capture atmospheric processes affecting the local climate. For this reason a dynamical downscaling approach will be used to develop a highly resolved spatial and temporal Climatic Indicator System (hrCIS) to derive ecologically relevant climate change indicators affecting the ecosystems of South Ecuador. A local-limited area model (LAM) will be used to (i) generate a highly resolved gridded climatology for present day (hrCISpr) based on reanalysis data and (ii) to generate a highly resolved gridded climatology for projected future (hrCISpf) based on the new Representative Concentration Pathways (RCP) scenario data. The output of the LAM for present day will be validated with in-situ measurement data and satellite-derived products to ensure the accuracy of the model for the simulations of the projected future. On the basis of statistical analysis of both climatologies changes in climate indicators such as air temperature and precipitation regime will be described. The proper storage, curation and accessibility of environmental data is of crucial importance for global change research particularly for monitoring purposes. This proposal will offer an adequate data management system for the Platform for Biodiversity and Ecosystem Monitoring and Research. This will be archived by extending the web-based information management system FOR816DW (a data warehouse for collaborative ecological research units) with features like automatic upload interfaces, a workbench for integrative analysis and an user defined alert system, which will facilitate environmental monitoring for scientist as well as stakeholders. Beside the development of these innovations a main objective is the transfer of knowledge and information (know how, source code, and collection data) to our partners in Ecuador. For this, and to bring together the existing data sources, we cooperate with university and non-university parties in the joint establishment of a Data access platform for environmental data of the region. This will include considerations on long-term accessibility, which is envisaged by a data transfer to the planned German national data infrastructure GFBio.
Das Projekt "Technical Support for the revision of ecolabel and green public procurement GPP Criteria Lot 1" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. The project's objective is to support JRC IPTS in revising the existing Ecolabel and GPP criteria of personal computers and notebook computers. The priority in this revision process is to first analyse which of the existing criteria and the supporting evidence are still valid and to identify the additional research that should be carried out. Potential additional criteria can be developed, if identified as necessary in the course of the study. The study starts with a definition of the scope; the necessarity for new or revised Ecolabel and GPP criteria is based on a market analysis and a technical analysis with research on the most significant environmental impacts during the whole life cycle of the products. This also includes the application of a consistent methodological approach regarding the hazardous substances criteria. Based on these findings, the improvement potential will be derived resulting in a proposal for a revised Ecolabel and GPP criteria set for desktop and notebook computers which will be discussed in a European stakeholder process.
Das Projekt "Asessing the potential of various instruments for sutainable consumption practises and greening of the market (ASCEE)" wird vom Umweltbundesamt gefördert und von Institut für ökologische Wirtschaftsforschung (IÖW) GmbH durchgeführt. The main objectives are : - to identify, structure and assess instruments addressing and promoting sustainable consumption and greening of the market; - to identify and evaluate best practice examples; - to develop policy strategies for transferring best practices; - to carry out a workshop; - to finalise insights by preparing a guideline for policy makers; - to prepare a scientific report and a summary. After a prephase connected with an internal kick-off meeting, the first phase analyses policy instruments, measures and actions and the gained experiences in WP 2 ' Basic instrumental overview . The instrumental overview is intended to be of a broader nature to collect insights into existing, but also discussed, proposed and/or rejected tools which have lead or could lead to a greening of the markets by addressing supply and/or demand. We will concentrate on promising tools and actions. The gained and collected information will be assessed along certain criteria developed beforehand in WP 3 'Assessment . WP 4 'Best practises and market transformation patterns will bring together the most instructive findings and consider what could be learned from them. The key question behind that approach is to look for the patterns behind successful greening strategies. The second phase is dedicated to the potentials for transferring of the results and their dissemination. WP 5 'Extension and transfer strategies picks up the results of the preceding work. It considers the findings and prepares strategies for the transfer of promising approaches. Results and proposals will be documented and discussed at a one-day workshop (WP 6 'Workshop ) which will collect insights, opinions and experiences of a broader auditorium. The discussion and results of the workshop will be documented and will contribute to the update of the preliminary findings. WP 7 'Dissemination brings together all findings and insights. Here we will prepare guidelines, a report, including a summary. Prime Contractor: Institut für Ökologische Wirtschaftsforschung GgmbH; Berlin; Germany.
Origin | Count |
---|---|
Bund | 205 |
Type | Count |
---|---|
Förderprogramm | 205 |
License | Count |
---|---|
offen | 205 |
Language | Count |
---|---|
Deutsch | 205 |
Englisch | 188 |
Resource type | Count |
---|---|
Keine | 162 |
Webseite | 43 |
Topic | Count |
---|---|
Boden | 178 |
Lebewesen & Lebensräume | 195 |
Luft | 142 |
Mensch & Umwelt | 205 |
Wasser | 156 |
Weitere | 205 |