Das TrinkWave-Verbundvorhaben entwickelt neue Multibarrieren-Aufbereitungsprozesse für eine Wasserwiederverwendung auf Basis einer sequentiellen Grundwasseranreicherung. Erstmalig werden neue multidisziplinäre Bewertungsansätze für innovative Verfahrenskombinationen der Wasserwiederverwendung zur Stützung der Trinkwasserversorgung entwickelt und validiert. Schwerpunkte sind dabei die Inaktivierung von Pathogenen (insbesondere Viren) und Antibiotikaresistenzen, die Reduktion von gesundheitsrelevanten Indikatorchemikalien und Transformationsprodukten, die Entwicklung neuer Leistungsparameter für biologische Aufbereitungsverfahren, sowie sozialwissenschaftliche Ansätze zur Risikokommunikation. Ein weiteres Ziel ist die Bereitstellung von Handlungsempfehlungen für Genehmigungsbehörden und Planer. Das Projekt gliedert sich in sieben Arbeitspakete, einschließlich einer wasserrechtlichen Einordnung (AP 1), der Erarbeitung von Beurteilungskriterien (AP 2), der Entwicklung neuer Verfahrenskonzepte (AP 3), der Bewertung von Aufbereitungsverfahren (AP 4), einer Risikokommunikation (AP 5), einer ingenieurtechnischen Einordnung (AP 6) sowie der Projektleitung (AP 7). Das Teilvorhaben des TZW hat die Ermittlung der Eliminationsleistung in Bezug auf hygienisch-relevante Bakterien (u.a. antibiotikaresistente Bakterien) und Viren zum Ziel. Es kommen neue molekularbiologische Methoden wie z.B. PMA-PCR und Long amplicon-PCR zum Einsatz, um die Mechanismen der Elimination mittels Festbettreaktor, Ozon und UV-LED zu beurteilen. In Batch- und Säulenexperimenten sowie in Demonstrationsvorhaben wird unter Anwendung mikro- und molekularbiologischer Methoden ein vertieftes Prozessverständnis zur Aufbereitung erlangt, das eine Anpassung der Betriebsbedingungen bei der Wasserwiederverwendung in Abhängigkeit der Randbedingungen erlaubt.
Virus inactivation processes at water-solid interfaces are key factors determining the persistence of viruses in various aqueous environments. These include environmental systems such as surface and groundwater, various food products, and blood and other bodily fluids. Once released into a body of water, viruses rapidly associate with water-solid interfaces. Interactions with solid surfaces influence virus disinfection, and thus determine the spread and persistence of infective viruses. Despite the importance of interfacial disinfection processes, their underlying causes remain poorly understood. In this sinergia project, we will identify the most important processes contributing to virus inactivation at interfaces, and we will develop a comprehensive model of the virus characteristics and surface properties that influence inactivation behavior. Our investigations will focus on model systems representative of one of the great challenges to public health, namely water resources contaminated by viral pathogens. To obtain a system characterization at the molecular level, we will use a combined computational and experimental approach. This project is divided into three sub-projects: sub-project A will establish the computational framework that simulates the physical-chemical interactions of virus with the water-solid interface; sub-project B will experimentally evaluate the extent and relative importance of physical and chemical processes that lead to virus inactivation; sub-project C will be dedicated to characterizing the microscale distribution of oxidizing chemical species at the solid-water interfaces. The combination of theory and experiment is well suited to overcome the challenges associated with the complex virus-interface system, and to derive a generally valid concept of virus inactivation at solid-water interfaces.
Das TrinkWave-Verbundvorhaben entwickelt neue Multibarrieren-Aufbereitungsprozesse für eine Wasserwiederverwendung auf Basis einer sequentiellen Grundwasseranreicherung. Erstmalig werden neue multidisziplinäre Bewertungsansätze für innovative Verfahrenskombinationen der Wasserwiederverwendung zur Stützung der Trinkwasserversorgung entwickelt und validiert. Schwerpunkte sind dabei die Inaktivierung von Pathogenen (insbesondere Viren) und Antibiotikaresistenzen, die Reduktion von gesundheitsrelevanten Indikatorchemikalien und Transformationsprodukten, die Entwicklung neuer Leistungsparameter für biologische Aufbereitungsverfahren, sowie sozialwissenschaftliche Ansätze zur Risikokommunikation. Ein weiteres Ziel ist die Bereitstellung von Handlungsempfehlungen für Genehmigungsbehörden und Planer. Das Projekt gliedert sich in sieben Arbeitspakete, einschließlich einer wasserrechtlichen Einordnung (AP 1), der Erarbeitung von Beurteilungskriterien (AP 2), der Entwicklung neuer Verfahrenskonzepte (AP 3), der Bewertung von Aufbereitungsverfahren (AP 4), einer Risikokommunikation (AP 5), einer ingenieurtechnischen Einordnung (AP 6) sowie der Projektleitung (AP 7). Zentrale Aufgaben der COPLAN AG ist das Arbeitspaket 6 und dort insbesondere die Bewertung der Betriebssicherheit (Risikoanalyse), der ökologischen, energetischen und ökonomischen Aspekte. Hierfür wird eine Lebenszyklusbetrachtung (LCA) und eine Gegenüberstellung zu herkömmlichen Verfahren vorgenommen. Ziele dabei sind insbesondere: i) Bewertung der Betriebssicherheit anhand definierter Kriterien einer Sicherheitsbetrachtung ii) Ökologische Bewertung (Energie, CO2 und Reststoffe) iii) Kostenvergleiche als Lebenszykluskosten iv) Summierende Einstufung anhand einer zusammenfassenden Balanced Score Card (Life Cycle Assessment) v) Formulierung von Bewertungskriterien zur Einstufung in Regelwerke (national und in der Folge international).
Der Klimawandel ist sowohl bei der Verfügbarkeit von Wasserressourcen in Süd- und Mitteleuropa, aber auch in verschiedenen Regionen Deutschlands spürbar. Regionale Wasserknappheit durch längere Trockenperioden verstärkt die Niedrigabflüsse bei gleichbleibenden Abwassereinleitungen in Oberflächengewässer und stellt eine saisonale Herausforderung für die städtische Trinkwasserversorgung dar. Im Projekt 'TrinkWave' sollen daher neue Multibarrieren-Aufbereitungsprozesse entwickelt werden, die aus gebrauchtem Wasser wieder hochwertiges und damit zusätzliches Wasser für die Trinkwasserversorgung bereitstellen. Zwölf Partner arbeiten zusammen an der Entwicklung solcher Verfahren. Dazu gehört unter anderem die Entfernung von Keimen, Antibiotikaresistenzen, Spuren- und Schadstoffen. Großtechnische Versuche fungieren dabei als direkte Vorstufe der Umsetzung. Weiterhin werden erstmals neue multidisziplinäre Beurteilungsansätze für Verfahrenskombinationen entwickelt und validiert. Sie dienen u.a. dazu, wasserrechtliche Konflikte zwischen Grundwasserschutz und Wasserwiederverwendung anhand von Fallbeispielen wissenschaftlich zu bewerten, eindeutige Kriterien für die Anforderung an die Qualität festzulegen und so die Akzeptanz für eine Wasserwiederverwendung zu erhöhen. Durch eine sozialwissenschaftliche Begleitforschung werden Ansätze zur Risikokommunikation mit Nutzern und Interessengruppen entwickelt. Ein weiteres Ziel sind Handlungsempfehlungen, die nationalen wie internationalen Betreibern, Genehmigungsbehörden und Planern die entwickelten Instrumente und technischen Leitlinien vermitteln.
Das TrinkWave-Verbundvorhaben entwickelt neue Multibarrieren-Aufbereitungsprozesse für eine Wasserwiederverwendung auf Basis einer sequentiellen Grundwasseranreicherung. Erstmalig werden neue multidisziplinäre Bewertungsansätze für innovative Verfahrenskombinationen der Wasserwiederverwendung zur Stützung der Trinkwasserversorgung entwickelt und validiert. Schwerpunkte sind dabei die Inaktivierung von Pathogenen (insbesondere Viren) und Antibiotikaresistenzen, die Reduktion von gesundheitsrelevanten Indikatorchemikalien und Transformationsprodukten, die Entwicklung neuer Leistungsparameter für biologische Aufbereitungsverfahren, sowie sozialwissenschaftliche Ansätze zur Risikokommunikation. Ein weiteres Ziel ist die Bereitstellung von Handlungsempfehlungen für Genehmigungsbehörden und Planer. Das Projekt gliedert sich in sieben Arbeitspakete, einschließlich einer wasserrechtlichen Einordnung (AP 1), der Erarbeitung von Beurteilungskriterien (AP 2), der Entwicklung neuer Verfahrenskonzepte (AP 3), der Bewertung von Aufbereitungsverfahren (AP 4), einer Risikokommunikation (AP 5), einer ingenieurtechnischen Einordnung (AP 6) sowie der Projektleitung (AP 7). Kern der Arbeiten an der TUM ist die Entwicklung neuer Aufbereitungskonzepte (AP 3). Das beinhaltet die Untersuchung einzelner Technologieelemente im Labormaßstab, halbtechnische Versuche an der TUM und die wissenschaftliche Begleitung von Bau und Betrieb einer Demonstrationsanlage. Darüber hinaus werden eine nachgeschaltete Ozonung sowie eine Desinfektion durch UV-LED an der TUM getestet. Ein weiterer Schwerpunkt ist die Entwicklung von Konzepten zur Bewertung der Leistungsfähigkeit verschiedener Verfahren (AP 4). Weitere Aufgaben liegen in AP 2 bei der Identifizierung relevanter Spurenstoffe und in AP 6 beim internationalen Technologietransfer. Zusätzlich ist die TUM als Projektkoordinator für das Management des Vorhabens, die Homepage sowie die Organisation von Besprechungen und Tagungen verantwortlich.
Das TrinkWave-Verbundvorhaben entwickelt neue Multibarrieren-Aufbereitungsprozesse für eine Wasserwiederverwendung auf Basis einer sequentiellen Grundwasseranreicherung. Erstmalig werden neue multidisziplinäre Bewertungsansätze für innovative Verfahrenskombinationen der Wasserwiederverwendung zur Stützung der Trinkwasserversorgung entwickelt und validiert. Schwerpunkte sind dabei die Inaktivierung von Pathogenen (insbesondere Viren) und Antibiotikaresistenzen, die Reduktion von gesundheitsrelevanten Indikatorchemikalien und Transformationsprodukten, die Entwicklung neuer Leistungsparameter für biologische Aufbereitungsverfahren, sowie sozialwissenschaftliche Ansätze zur Risikokommunikation. Ein weiteres Ziel ist die Bereitstellung von Handlungsempfehlungen für Genehmigungsbehörden und Planer. Das Projekt gliedert sich in sieben Arbeitspakete, einschließlich einer wasserrechtlichen Einordnung (AP 1), der Erarbeitung von Beurteilungskriterien (AP 2), der Entwicklung neuer Verfahrenskonzepte (AP 3), der Bewertung von Aufbereitungsverfahren (AP 4), einer Risikokommunikation (AP 5), einer ingenieurtechnischen Einordnung (AP 6) sowie der Projektleitung (AP 7). Zentrale Aufgaben der UBT sind Strategien zur Risikokommunikation (mit Schulen und Stakeholdern) zu koordinieren, ein Internetportal zu entwickeln und fachgerecht zu bestücken sowie über geeignete Lehrerfortbildungen Multiplikatoren fachgerecht einzubinden.
Das TrinkWave-Verbundvorhaben entwickelt neue Multibarrieren-Aufbereitungsprozesse für eine Wasserwiederverwendung auf Basis einer sequentiellen Grundwasseranreicherung. Erstmalig werden neue multidisziplinäre Bewertungsansätze für innovative Verfahrenskombinationen der Wasserwiederverwendung zur Stützung der Trinkwasserversorgung entwickelt und validiert. Schwerpunkte sind dabei die Inaktivierung von Pathogenen (insbesondere Viren) und Antibiotikaresistenzen, die Reduktion von gesundheitsrelevanten Indikatorchemikalien und Transformationsprodukten, die Entwicklung neuer Leistungsparameter für biologische Aufbereitungsverfahren, sowie sozialwissenschaftliche Ansätze zur Risikokommunikation. Ein weiteres Ziel ist die Bereitstellung von Handlungsempfehlungen für Genehmigungsbehörden und Planer. Das Projekt gliedert sich in sieben Arbeitspakete, einschließlich einer wasserrechtlichen Einordnung (AP 1), der Erarbeitung von Beurteilungskriterien (AP 2), der Entwicklung neuer Verfahrenskonzepte (AP 3), der Bewertung von Aufbereitungsverfahren (AP 4), einer Risikokommunikation (AP 5), einer ingenieurtechnischen Einordnung (AP 6) sowie der Projektleitung (AP 7). Die Aufgaben der Universität Oldenburg liegen in der gekoppelten Modellierung von Wasserströmung, -transport und ablaufenden Prozessen in den verschiedenen natürlichen und halbtechnischen Systemen, die im Verbundprojekt betrachtet werden. Hauptaufgabe ist es, in AP 3 ein numerisches Modell für das SMART 2.0 Demonstrationsvorhaben in Berlin zu erstellen, welches Wasserströmung, Transport von Wasserinhaltsstoffen, die Redoxzonierung und den daran gekoppelten Spurenstoffabbau sowie Virentransport und -inaktivierung abbildet. Weiterhin wird ein Modell für den SMART 1.0 Standort in Berlin erstellt sowie in AP 1 die Validierung des 3D-Modells unterstützt. Der Vergleich der verschiedenen Modelle ermöglicht es, die Effizienz von SMART 2.0 mit SMART 1.0 und konventionellen Grundwasseranreicherungsverfahren zu vergleichen.
| Origin | Count |
|---|---|
| Bund | 24 |
| Type | Count |
|---|---|
| Förderprogramm | 24 |
| License | Count |
|---|---|
| offen | 24 |
| Language | Count |
|---|---|
| Deutsch | 21 |
| Englisch | 7 |
| Resource type | Count |
|---|---|
| Keine | 10 |
| Webseite | 14 |
| Topic | Count |
|---|---|
| Boden | 19 |
| Lebewesen und Lebensräume | 24 |
| Luft | 21 |
| Mensch und Umwelt | 24 |
| Wasser | 23 |
| Weitere | 24 |