<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p> </p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a> ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>
Der Datensatz stellt Informationen hinsichtlich oberflächennaher, mitteltiefer und tiefer Geothermie bereit. Die oberflächennahe Geothermie betrachtet die Wärmeleitfähigkeit der Gesteine für Erdwärmesonden bis in 100 Meter Tiefe sowie die geothermische Ergiebigkeit für Erdwärmekollektoren. Hinsichtlich mitteltiefer Geothermie liefert der Datensatz Informationen zur Planung von geothermischen Anlagen bis in 1.000 Meter Tiefe, derzeit für das Rheinland, das zentrale Münsterland sowie den Nordrand des Rheinischen Schiefergebirges. Für die Planung von tiefen geothermischen Anlagen (Dubletten) bis in mehr als 5.000 Meter Tiefe werden geologische Informationen über die als Zielhorizonte in Frage kommenden Kalksteinschichten zur Verfügung gestellt. Der Datensatz liefert damit wertvolle Eckdaten bezüglich der Nutzungsmöglichkeiten von Erdwärme; beispielsweise zum Beheizen oder Klimatisieren von Gebäuden aller Art. Verfügbare Kartenthemen: Wärmeentzugsleistung für Erdwärmekollektoren; Wärmeleitfähigkeit für oberflächennahe Geothermie in 40, 60, 80, 100 Meter Tiefe; Übersichtsdarstellung hydrogeologisch sensibler Bereiche; Bereich erhöhter Fließgeschwindigkeit; Wärmeleitfähigkeit für mitteltiefe Geothermie in 250, 500, 750, 1.000 Meter Tiefe; offene Wärmespeicher (ATES); Dublette; oberkreidezeitliche, unterkarbonzeitliche sowie devonzeitliche Karbonate als Zielhorizonte (Top, Mächtigkeit, Temperatur, Faziesverteilung).
Die Verwendung von Salzschmelzen als Wärmespeicher und Wärmeträgermedium in CSP-Kraftwerken bietet das Potenzial für höhere Betriebstemperaturen im Solarfeld, bringt aber auch technische Herausforderungen mit sich. Das ADVIAMOS-Konsortium konzentriert sich auf salzschmelzenspezifische Aspekte beim Betrieb von Parabolrinnen- und Zentralreceiver-Anlagen mit dem Ziel, die Betriebs- und Wartungsabläufe zu verbessern und damit die Kosten zu senken. Die Partner verfolgen einen mehrstufigen Ansatz, der von Aspekten der Materialien und Komponenten bis hin zur Systemebene reicht. BrightSource und Solarlite, zwei weltweit führende Anbieter von kommerziellen CSP-Systemen, bringen ihre Erfahrungen bei der Entwicklung, der Installation und dem Betrieb von Solarturm- bzw. Parabolrinnen-CSP-Anlagen ein. BrightSource wird spezielle Beschichtungsmuster zur Verfügung stellen, die in den vom DLR in Auftrag gegebenen Power Towers verwendet werden, und steht beratend zur Seite. Zusammen mit Ductolux, die den Bereich der Prozesssteuerung abdeckt, und Steinmueller Engineering, die ihr Know-how über maßgeschneiderte Dampferzeugungssysteme einbringen, deckt das Konsortium alle Aspekte des industriellen Betriebs von CSP mit Salzschmelze ab. Die Industriepartner schließen sich mit zwei Universitäten, der Universität von Extremadura und der Universität Complutense de Madrid, und einer großen Forschungs- und Entwicklungseinrichtung, dem DLR, zusammen, die über komplementäres Know-how zu den Grundlagen und Technologien der Salzschmelze verfügen. Gemeinsam mit der Universität von Évora verwaltet und betreibt das DLR die Évora Molten Salt Platform (EMSP). Diese einzigartige Konstellation ermöglicht es den Projektpartnern, gemeinsam entscheidende Aspekte beim Betrieb von CSP-Systemen auf der Basis von Salzschmelze anzugehen, von Materialaspekten wie Salzdegradation und Korrosion bis hin zu Aspekten auf Systemebene wie verbesserte Prozesskontrolle und Automatisierung.
Die Verwendung von Salzschmelzen als Wärmespeicher und Wärmeträgermedium in CSP-Kraftwerken bietet das Potenzial für höhere Betriebstemperaturen im Solarfeld, bringt aber auch technische Herausforderungen mit sich. Das ADVIAMOS-Konsortium konzentriert sich auf salzschmelzenspezifische Aspekte beim Betrieb von Parabolrinnen- und Zentralreceiver-Anlagen mit dem Ziel, die Betriebs- und Wartungsabläufe zu verbessern und damit die Kosten zu senken. Die Partner verfolgen einen mehrstufigen Ansatz, der von Aspekten der Materialien und Komponenten bis hin zur Systemebene reicht. BrightSource und Solarlite, zwei weltweit führende Anbieter von kommerziellen CSP-Systemen, bringen ihre Erfahrungen bei der Entwicklung, der Installation und dem Betrieb von Solarturm- bzw. Parabolrinnen-CSP-Anlagen ein. BrightSource wird spezielle Beschichtungsmuster zur Verfügung stellen, die in den vom DLR in Auftrag gegebenen Power Towers verwendet werden, und steht beratend zur Seite. Zusammen mit Ductolux, die den Bereich der Prozesssteuerung abdeckt, und Steinmueller Engineering, die ihr Know-how über maßgeschneiderte Dampferzeugungssysteme einbringen, deckt das Konsortium alle Aspekte des industriellen Betriebs von CSP mit Salzschmelze ab. Die Industriepartner schließen sich mit zwei Universitäten, der Universität von Extremadura und der Universität Complutense de Madrid, und einer großen Forschungs- und Entwicklungseinrichtung, dem DLR, zusammen, die über komplementäres Know-how zu den Grundlagen und Technologien der Salzschmelze verfügen. Gemeinsam mit der Universität von Évora verwaltet und betreibt das DLR die Évora Molten Salt Platform (EMSP). Diese einzigartige Konstellation ermöglicht es den Projektpartnern, gemeinsam entscheidende Aspekte beim Betrieb von CSP-Systemen auf der Basis von Salzschmelze anzugehen, von Materialaspekten wie Salzdegradation und Korrosion bis hin zu Aspekten auf Systemebene wie verbesserte Prozesskontrolle und Automatisierung.
Die Verwendung von Salzschmelzen als Wärmespeicher und Wärmeträgermedium in CSP-Kraftwerken bietet das Potenzial für höhere Betriebstemperaturen im Solarfeld, bringt aber auch technische Herausforderungen mit sich. Das ADVIAMOS-Konsortium konzentriert sich auf salzschmelzenspezifische Aspekte beim Betrieb von Parabolrinnen- und Zentralreceiver-Anlagen mit dem Ziel, die Betriebs- und Wartungsabläufe zu verbessern und damit die Kosten zu senken. Die Partner verfolgen einen mehrstufigen Ansatz, der von Aspekten der Materialien und Komponenten bis hin zur Systemebene reicht. BrightSource und Solarlite, zwei weltweit führende Anbieter von kommerziellen CSP-Systemen, bringen ihre Erfahrungen bei der Entwicklung, der Installation und dem Betrieb von Solarturm- bzw. Parabolrinnen-CSP-Anlagen ein. BrightSource wird spezielle Beschichtungsmuster zur Verfügung stellen, die in den vom DLR in Auftrag gegebenen Power Towers verwendet werden, und steht beratend zur Seite. Zusammen mit Ductolux, die den Bereich der Prozesssteuerung abdeckt, und Steinmueller Engineering, die ihr Know-how über maßgeschneiderte Dampferzeugungssysteme einbringen, deckt das Konsortium alle Aspekte des industriellen Betriebs von CSP mit Salzschmelze ab. Die Industriepartner schließen sich mit zwei Universitäten, der Universität von Extremadura und der Universität Complutense de Madrid, und einer großen Forschungs- und Entwicklungseinrichtung, dem DLR, zusammen, die über komplementäres Know-how zu den Grundlagen und Technologien der Salzschmelze verfügen. Gemeinsam mit der Universität von Évora verwaltet und betreibt das DLR die Évora Molten Salt Platform (EMSP). Diese einzigartige Konstellation ermöglicht es den Projektpartnern, gemeinsam entscheidende Aspekte beim Betrieb von CSP-Systemen auf der Basis von Salzschmelze anzugehen, von Materialaspekten wie Salzdegradation und Korrosion bis hin zu Aspekten auf Systemebene wie verbesserte Prozesskontrolle und Automatisierung.
In diesem Vorhaben wird eine der Schlüsselkomponenten zu einer netzdienlichen Langzeit-Energiespeicherlösung auf Basis von Malta’s Hochtemperatur-Wärmepumpen Strom- und Wärmespeichern (MHWS) entwickelt und das MHWS Einsatzpotential in Deutschland untersucht. Die MHWS-Speichertechnologie stellt bei der Ausspeicherung gleichzeitig Strom und Wärme bereit, sodass die Elektrifizierung des Wärmesektors über Kraft-Wärmekopplung ebenfalls erfolgen kann. Ein wesentliches Ziel des Vorhabens ist die Kraftwerks-maßstäbliche Untersuchung neuer Flüssigsalz-Luft Wärmeübertrager als kritische MHWS-Schlüsselkomponente in der Testanlage für Wärmespeicherung in Salzschmelzen (TESIS) des DLR. Diese Untersuchung stellt einen sehr wichtigen Qualifikations-Schritt dar, das Wärmepumpen Strom- und Wärmespeicher Konzept zu Kraftwerksgröße hochzuskalieren und damit fossile Gaskraftwerke samt ihren Flexibilitäts- und Netzstabilisierungsdiensten in Zukunft zu ersetzen. Damit ebnet dieses Vorhaben den Weg, für die Energiewende in Deutschland, Europa und weltweit deutsche Turbomaschinen als weitere Kernkomponente von Hochtemperatur-Wärmepumpen Strom- und Wärmespeichern einzusetzen. MHWS verfolgt folgende Hauptziele im Teilvorhaben: - Definition geeigneter Zielparameter für die Wärmeübertrager-Untersuchungen und die Integration der MHWS-Speichertechnologie in das Energiesystem (AP2) - Begleitung der Wärmeübertragertests und Auswertung der Testergebnisse (AP 3) samt ihrer Auswirkung auf Design und Betrieb eines MHWS-Speichers (AP 6) - Anpassung des MHWS-Speichermodells für Wärmeauskopplung und Kostenermittlung unterschiedlicher Speicherkonfigurationen (AP6) - Technoökonomische Bewertung der MHWS-Speichertechnologie mit Integration in Strom- und Wärmenetze und Untersuchung des Marktpotentials in Deutschland (AP7)
Entwicklung eines Luftkollektors mit Waermespeicher zur Vorwaermung von Trocknungsluft. Entwicklung eines Simulationsprogramms zur Bestimmung des Betriebsverhaltens.
| Origin | Count |
|---|---|
| Bund | 1239 |
| Kommune | 1 |
| Land | 69 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 1 |
| Förderprogramm | 1216 |
| Text | 30 |
| Umweltprüfung | 36 |
| unbekannt | 24 |
| License | Count |
|---|---|
| geschlossen | 76 |
| offen | 1228 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 1248 |
| Englisch | 171 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 1 |
| Datei | 1 |
| Dokument | 49 |
| Keine | 742 |
| Webdienst | 5 |
| Webseite | 524 |
| Topic | Count |
|---|---|
| Boden | 693 |
| Lebewesen und Lebensräume | 534 |
| Luft | 413 |
| Mensch und Umwelt | 1308 |
| Wasser | 422 |
| Weitere | 1249 |