The Watershed Boundaries of all GRDC Stations are generated on the basis of HydroSHEDS (Lehner et al., 2008) and the Multi-Error-Removed Improved-Terrain (MERIT) Hydro dataset (Yamazaki et al., 2019). It is updated as soon as changes in the metadata occur or new stations have to be implemented. The dataset is licensed under CC-BY-4.0. Source: Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, EOS, 89, 93-94, https://doi.org/10.1029/2008EO100001, 2008. Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset, Water Resources Research, 55, 5053-5073, https://doi.org/10.1029/2019WR024873, 2019. The Watershed Boundaries of all GRDC Stations are generated on the basis of HydroSHEDS (Lehner et al., 2008) and the Multi-Error-Removed Improved-Terrain (MERIT) Hydro dataset (Yamazaki et al., 2019). It is updated as soon as changes in the metadata occur or new stations have to be implemented. The dataset is licensed under CC-BY-4.0. Source: Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, EOS, 89, 93-94, https://doi.org/10.1029/2008EO100001, 2008. Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset, Water Resources Research, 55, 5053-5073, https://doi.org/10.1029/2019WR024873, 2019.
Im nordöstlichen Harzvorland soll im Bereich der Einzugsgebiete von Ilse und Holtemme, d.h. an der Wasserscheide zwischen Weser und Elbe, die Reliefentwicklung vom Beginn der Saale-Eiszeit bis zum Ende der Weichsel-Eiszeit im Zusammenwirken fluvialer, glazifluvialer, glaziär und periglaziärer Prozesse untersucht werden. Die Besonderheiten des Untersuchungsgebietes und der Fragestellungen im einzelnen ergeben sich aus seiner Lage im Grenzbereich der Maximalausdehnung des saalezeitlichen Inlandeises und im Aufschüttungsgebiet ausgedehnter pleistozäner Verlandschwemmfächer des Harzes. Überdies wird im Untersuchungsgebiet die obere Grenze der Lössbedeckung erreicht, woraus sich Fragen nach der Ausprägung und Genese dieser Grenze, nach der Beziehung des Lösses zu den periglaziären Schuttdecken und nach der Gliederung dieser Deckschichten ableiten. Grundlage der Untersuchungen ist die geomorphologische Kartierung, die durch die digitale Reliefanalyse von DGM mit dem Programmen SARA und SADO wesentlich unterstützt werden soll. Die eigentliche Kartierung soll im Bereich der Lösgrenze durch die Detailanalyse von Catena-artig angeordneten Bodenprofile ergänzt werden.
Als Grundlage für die Konstruktion der Einzugsgebietsgrenzen dienten die Höheninformationen der topografischen Karten im Maßstab 1:10.000 und die digitalen Geländemodelle mit Rasterweiten von 2m, 5m und 25m. Zusätzlich wurden für die Konstruktion der Wasserscheiden die Informationen zu Fließgewässern, Entwässerungsgräben und Drainagen aus dem digitalen Gewässernetz gewnet25 sowie den Katastern der Wasser- und Bodenverbände verwendet. Zur Herstellung eines hydrologisch und wasserwirtschaftlich vollständigen Datenbestandes reichen die Einzugsgebiete teilweise über die Landesgrenze hinaus. Der Datenbestand enthält zumindest die Einzugsgebiete aller Fließgewässer, die gemäß Wasserrahmenrichtlinie berichtsrelevant sind (Einzugsgebiet > 10 km²).
Der Datensatz beinhaltet Daten vom LBGR über die Kulminationslinien Brandenburgs und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Die Kulminationslinien bilden praktisch das Gegenstück zu den Tiefenlinien und stellen die Scheitelbereiche der lokalen Erhebungen dar. Bei Niederschlagsereignissen wirken sie als Wasserscheiden im Abflussgeschehen.
Der vorliegende Datenbestand (ezg25.shp,Version 4.4) beinhaltet die Geometrien der Einzugsgebiete Version 4.4. Als Grundlage für die Konstruktion der Einzugsgebietsgrenzen dienten die Höheninformationen der topografischen Karten im Maßstab 1:10.000 und die digitalen Geländemodelle mit Rasterweiten von 2m, 5m und 25m. Zusätzlich wurden für die Konstruktion der Wasserscheiden die Informationen zu Fließgewässern, Entwässerungsgräben und Drainagen aus dem digitalen Gewässernetz gewnet25 sowie den Katastern der Wasser- und Bodenverbände verwendet. Zur Herstellung eines hydrologisch und wasserwirtschaftlich vollständigen Datenbestandes reichen die Einzugsgebiete teilweise über die Landesgrenze hinaus. Der Datenbestand enthält zumindest die Einzugsgebiete aller Fließgewässer, die gemäß Wasserrahmenrichtlinie berichtsrelevant sind (Einzugsgebiet > 10 km²). Die Dokumentation beinhaltet eine detailierte Änderungsliste in Bezug auf die Vorgängerversion ezg Version V 4.3 Der vorliegende Datenbestand (ezg25.shp,Version 4.4) beinhaltet die Geometrien der Einzugsgebiete Version 4.4. Als Grundlage für die Konstruktion der Einzugsgebietsgrenzen dienten die Höheninformationen der topografischen Karten im Maßstab 1:10.000 und die digitalen Geländemodelle mit Rasterweiten von 2m, 5m und 25m. Zusätzlich wurden für die Konstruktion der Wasserscheiden die Informationen zu Fließgewässern, Entwässerungsgräben und Drainagen aus dem digitalen Gewässernetz gewnet25 sowie den Katastern der Wasser- und Bodenverbände verwendet. Zur Herstellung eines hydrologisch und wasserwirtschaftlich vollständigen Datenbestandes reichen die Einzugsgebiete teilweise über die Landesgrenze hinaus. Der Datenbestand enthält zumindest die Einzugsgebiete aller Fließgewässer, die gemäß Wasserrahmenrichtlinie berichtsrelevant sind (Einzugsgebiet > 10 km²). Die Dokumentation beinhaltet eine detailierte Änderungsliste in Bezug auf die Vorgängerversion ezg Version V 4.3 Der vorliegende Datenbestand (ezg25.shp,Version 4.4) beinhaltet die Geometrien der Einzugsgebiete Version 4.4. Als Grundlage für die Konstruktion der Einzugsgebietsgrenzen dienten die Höheninformationen der topografischen Karten im Maßstab 1:10.000 und die digitalen Geländemodelle mit Rasterweiten von 2m, 5m und 25m. Zusätzlich wurden für die Konstruktion der Wasserscheiden die Informationen zu Fließgewässern, Entwässerungsgräben und Drainagen aus dem digitalen Gewässernetz gewnet25 sowie den Katastern der Wasser- und Bodenverbände verwendet. Zur Herstellung eines hydrologisch und wasserwirtschaftlich vollständigen Datenbestandes reichen die Einzugsgebiete teilweise über die Landesgrenze hinaus. Der Datenbestand enthält zumindest die Einzugsgebiete aller Fließgewässer, die gemäß Wasserrahmenrichtlinie berichtsrelevant sind (Einzugsgebiet > 10 km²). Die Dokumentation beinhaltet eine detailierte Änderungsliste in Bezug auf die Vorgängerversion ezg Version V 4.3
Die Karte zeigt die Grundwasserkörper in Niedersachsen im Maßstab 1:500 000. Gemäß der EG-WRRL ist ein Grundwasserkörper ein abgegrenztes Grundwasservolumen innerhalb eines oder mehrerer Grundwasserleiter. Die Grundwasserkörper wurden im LBEG nach hydraulischen Grenzen und hydrogeologischen Kriterien abgegrenzt. Als hydraulische Grenzen wurden die oberirdischen Wasserscheiden als oberstromige und die relevanten Vorfluter als unterstromige Begrenzung herangezogen. Dabei wurde vorausgesetzt, dass die Wasserscheiden der oberirdischen Gewässer großräumig auch die unterirdischen Wasserscheiden widerspiegeln. Örtlich kann es aber aufgrund der hydrogeologischen Verhältnisse zu Abweichungen kommen. Eine Abgrenzung von Wasserkörpern in vertikaler Richtung wurde nicht vorgenommen, da eine Untergliederung aufgrund des teilweise komplexen geologischen Baus als nicht sinnvoll und für den Zweck als nicht erforderlich angesehen wurde. Im zweiten Schritt wurden diese hydraulisch abgegrenzten Grundwasserkörper nach den überwiegenden hydrogeologischen Baueinheiten Lockergestein, mesozoisches Festgestein und paläozoisches Festgestein weiter unterteilt. Kleinere Abweichungen zwischen oberirdischem und unterirdischem Einzugsgebiet können im Bereich der Wasserscheiden auftreten. Die Darstellung der hydrogeologischen Verhältnisse ist der Beschreibung der hydrogeologischen Teilräume zu entnehmen (siehe Erläuterungen zu Räume und Teilräume), aus denen die Grundwasserkörper aufgebaut sind. Um die Konsistenz der in Niedersachsen verwendeten GIS-Datensätze sicherzustellen, sind die GIS-Geometrien der Grundwasserkörper im Arbeitsmaßstab 1 : 25 000 vom NLWKN aktualisiert worden. Dabei hat keine grundsätzliche Neuabgrenzung anhand fachlicher Kriterien stattgefunden, sondern es wurden die vorhandenen Grenzverläufe geprüft und gegebenenfalls angepasst. Der Datensatz enthält alle vollständig bzw. teilweise in Niedersachsen gelegenen Grundwasserkörper (Arbeitsstand Februar 2013). Der Datensatz ist nicht grenzbeschnitten. Abgrenzungen der Grundwasserkörper außerhalb Niedersachsens wurden 1:1 aus den Datensätzen der Nachbarländer übernommen. Vereinzelte Abstimmungen mit Institutionen außerhalb des NLWKN sind noch erforderlich (z.B. Harmonisierung der Benennungen oder Abgrenzungen im Bereich der Landesgrenzen).
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Echtzeitvorhersagen von Abfluss und Überflutungen stellen eine große Herausforderung dar, auch weil Wettervorhersagen konvektive Starkregenereignisse auf der stündlichen Sub-Kilometerskala noch nicht mit ausreichender Qualität vorhersagen können. Das führt zu unvorhergesehenen Überflutungen und großen Schäden öffentlichen Eigentums und Infrastruktur und potentiell zu Todesopfern. Bekannte Beispiele in der Region des Geoverbundes ABC/J sind die Sturzfluten in Wachtberg am 3. Juli 2010 und am 6. Juni 2016. Das Projekt wird ein neuartiges, probabilistisches Echtzeitvorhersagesystem für Abfluss und Überflutungen in kleinen Einzugsgebieten (kleiner als 500 km2) entwickeln. Das Projekt konzentriert sich auf die Einzugsgebiete Wachtberg, Ammer und Bode. Wir werden QPE, QPN und QPF (quantitative Niederschlagsschätzung, Nowcasting und numerische Vorhersage), die Produkte von P1, P2 und P3 in dem Vorhersagesystem verwenden, um die erreichten Verbesserungen in RealPEP zu bewerten. Ein wichtiger Aspekt des Projektes ist die Verwendung verschiedener hydrologischer Modelle (konzeptionell und physikbasiert) für die Flutvorhersage. Wir werden den Mehrwert und die Limitierungen der verschiedenen Modelle (und Datenassimilierungsverfahren) identifizieren. Konzeptionelle Modelle profitieren hauptsächlich von der Optimierung/Kalibrierung des Abflusses und der Möglichkeit schnell, große Ensemble berechnen zu können; physikbasierte Modelle dagegen haben den Vorteil verschiedenartige Beobachtungsdaten verarbeiten zu können und Prozesse besser abzubilden, wodurch eine einfachere Übertragbarkeit auf andere Einzugsgebiete ohne Kalibration möglich ist. Schlussendlich werden wir untersuchen ob die verschiedenen Ansätze sich ergänzende Information zu Echtzeitvorhersage von Überflutungen liefern können.
Residence times is a key signature to characterize flow and transport at all temporal and spatial scales in different hydrological compartments. It is assumed that the spatial organisation of the landscape controls space-time organisation of the water cycle and related processes and hence the residence time. Combining flux and residence concentration data of natural tracers in water, stable isotopes, and artificial tracers will allow us to predict residence time and flow pathways in the different hydrological compartments as well as integrative for entire watersheds. We will investigate with different methods the fingerprint of hydrological processes found in the signal of isotopic composition and natural and artificial tracers of soil, ground and stream water in space and time. The temporal variability of isotopes in soil water, groundwater and stream water will be combined to benchmark transport and flow models and to derive a new functional form of short to long-term transit time distributions. The spatial patterns of stable isotopes in the saturated and unsaturated zone will be used to derive long-term flow pathways, mixing patterns and the proportion of evaporation to transpiration. Artificial tracer experiments using salt and electric resistivities will vizualize and quantify internal flow pathways in particular preferential flow pathways.
Large-sample datasets are essential in hydrological science to support modelling studies and advance process understanding. Caravan is a community initiative to create a large-sample hydrology dataset of meteorological forcing data, catchment attributes and discharge data for catchments around the world. This dataset is a subset of hydrological discharge data and station-based watersheds from the Global Runoff Data Centre (GRDC), which are covered by an open data policy. The dataset covers stations from 5356 catchments and 25 countries and spans the years 1950–2023. Compared to the core version of Caravan, the extension takes the total number of Caravan catchments to be 22,372 (of which 1589 catchments are duplicates between the core and extensions). While in the core Caravan dataset mostly stations from North America, central Europe and South America were included, the new extension significantly improves the global coverage of the dataset with new stations across Europe, South America, South Africa, Australia and Aotearoa New Zealand. In addition, the temporal extension of the time series could be significantly increased from 40–70 years. The extension strongly improves the global and temporal coverage of Caravan and represents a valuable dataset for global hydrological and climatological modelling studies. The dataset is released under a CC-BY-4.0 license that allows for redistribution and is publicly available on Zenodo: https://doi.org/10.5281/zenodo.15349031 . Citation: Färber, C., Plessow, H., Mischel, S. A., Kratzert, F., Addor, N., Shalev, G., and Looser, U.: GRDC-Caravan: extending Caravan with data from the Global Runoff Data Centre, Earth Syst. Sci. Data, 17, 4613–4625, https://doi.org/10.5194/essd-17-4613-2025 , 2025. Links: Publication Dataset
| Origin | Count |
|---|---|
| Bund | 95 |
| Global | 3 |
| Kommune | 2 |
| Land | 34 |
| Wissenschaft | 8 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Ereignis | 1 |
| Förderprogramm | 78 |
| Text | 10 |
| Umweltprüfung | 2 |
| unbekannt | 32 |
| License | Count |
|---|---|
| geschlossen | 20 |
| offen | 99 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 59 |
| Englisch | 73 |
| Resource type | Count |
|---|---|
| Archiv | 7 |
| Bild | 3 |
| Datei | 3 |
| Dokument | 18 |
| Keine | 70 |
| Webdienst | 9 |
| Webseite | 36 |
| Topic | Count |
|---|---|
| Boden | 100 |
| Lebewesen und Lebensräume | 99 |
| Luft | 76 |
| Mensch und Umwelt | 125 |
| Wasser | 127 |
| Weitere | 123 |