Das OEKOTOP HEERDT ist ein beispielhaftes Modell fuer zukuenftiges staedtisches Leben. Wir schaffen ein ganzheitliches oekologisches System, das moeglichst autonom sein soll. Sonne und Wind versorgen uns mit Energie, Abwaesser werden durch Wurzelraumentsorgung geklaert, Grauwasser wird wiederverwendet, Biogaerten und Permakulturpark liefern gesundes Obst und Gemuese zur Selbstversorgung, naturnah gehaltene Freiraeume schaffen Lebensbereiche fuer bedrohte Pflanzen und Tiere. Wohnen, Arbeiten und Erholen sind nicht mehr getrennt. Wir schaffen neue oekologisch orientierte Arbeitsplaetze. Wir entwickeln soziale Wohnkonzepte mit vielfaeltigen Nutzungsmoeglichkeiten fuer alle Altersgruppen. Die natuerlichen Freiraeume dienen als Naherholungsgebiete und Spielbereiche. Intensive oekopaedagogische Arbeit unterstuetzt die Entwicklung des Systems. Wir arbeiten mit aehnlichen Projekten ueberregional zusammen. Wir setzen das Konzept gemeinsam mit Fachleuten in prozesshafter Planung um und realisieren es moeglichst weitgehend in Selbsthilfe. Die sozialoekologische Tradition wird weiter verfolgt (Organisation der praktischen Arbeiten, Mitgestalten von Wohnkonzepten, soziale Freiraumgestaltung und aehnliches). Das Projekt soll staendig wissenschaftlich begleitet werden.
Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Thermisches Reinigungsverfahren fuer salzhaltige Industrieabwaesser mit biologisch nicht abbaubaren Verunreinigungen (TOC mehr als 5000 mg/l; Abwassermenge bis 50 m3/h) abtrennen der leichtfluechtigen Verunreinigungen durch Eindampfen und Verbrennung des Rueckstandskonzentrats. Die abgetrennten Brueden werden bei hoher Temperatur oxidiert. Waermerueckgewinnung bei der Konzentratverbrennung und Kondensation der oxidierten Brueden. Das Bruedenkondensat kann als Prozesswasser mit hoher Reinheit mit TOC weniger als 10 mg/l wieder verwendet werden.
Die Schneider & Sohn GmbH & Co. KG wurde 1929 in Blaufelden-Gammesfeld als Steinbruch-Unternehmen gegründet und betätigt sich heute als ein familiengeführtes mittelständisches Unternehmen in den Bereichen Tiefbau, Abbruch, Baustoffhandel, Entsorgung und Transport. Seit mehr als 30 Jahren ist das Unternehmen im Baustoff-Recycling tätig. Trotz rechtlicher Verpflichtung zum selektiven Rückbau von Gebäuden und Infrastrukturen und der damit verbundenen Getrennthaltungspflicht für Rückbaumaterialien fallen in der Praxis stets größere Mengen an gemischten Baurestmassen an, bestehend aus Betonbruch, Ziegelbruch, Leichtbetonbruch, Sand, Mörtel etc. Diese Baurestmassen werden in der Regel aus Kostengründen entweder auf Deponien abgelagert oder nach einer rudimentären Aufbereitung für minderwertige Verwertungsmaßnahmen wie Verfüllungen genutzt. Für eine Aufbereitung z.B. für den Einsatz im Straßenbau war bis vor einigen Jahren die Trockenaufbereitung Stand der Technik, für den hochwertigen Einsatz in hochqualitativem Recyclingbeton ist es heute die noch wenig verbreitete Nassklassierungsaufbereitung von bereits selektiv rückgebautem und aufbereitetem Bauschuttmaterial. Jedoch sind derzeit gemischt anfallende Baurestmassen mit einer Vielzahl unterschiedlicher Einzelfraktionen kaum hochwertig zu recyceln. Das Projekt geht darüber hinaus mit dem Ziel, sortenreine und hochwertige Korngrößen für den weiteren Einsatz in Recyclingverfahren bereitzustellen. Dafür verbindet das Unternehmen in der neuen Anlage in Rot am See eine hochwertige Nassklassierung mittels Schwertwäsche etc. mit einer innovativen Farb- und Nahinfrarotsortierung. Diese ist mittels einer automatisierten vertikalen Sortierung der aufbereiteten Gesteinskörnungen nicht nur in der Lage, nach Korngrößen-Bandbreiten zu sortieren, sondern auch nach materialspezifischen Einzelfraktionen aufgrund ihrer Farbe und ihrer Beschaffenheit zu trennen (Beton, Ziegel etc.). So ist ein hochwertiges Recycling selbst schwieriger, gemischter Baurestmassen durch die Gewinnung gütegesicherter Gesteinskörnung z.B. für den Einsatz in RC-Beton möglich. Die Umweltentlastungen aus diesem Projekt bestehen aus Primärrohstoffeinsparungen durch die Gewinnung hochwertiger Recycling-Gesteinskörnungen Schonung der Abbaustätten für Kies, Sand, Splitt etc. Schonung von Deponievolumen Bei einem gesamthaften Einsatz von 100.000 Tonnen pro Jahr an mineralischen Reststoffen können bis zu 96.400 Tonnen pro Jahr als Sekundärrohstoffe zurückgewonnen und in diesem Umfang Primärrohstoffe eingespart werden. Zumindest für den Bauschuttbereich ist diese Rückgewinnungsrate sehr anspruchsvoll (ca. 30 bis 40 Prozent höher als bei einer konventionellen Trockenaufbereitungsanlage). Zudem werden sowohl Rohstoffabbauflächen als auch in ähnlicher Größenordnung Deponievolumina für diese Materialmengen eingespart. Insgesamt ergibt die Berechnung eine Flächenersparnis von rund 1.900 Quadratmeter pro Jahr. Da die Anlage in einem geschlossenen Wasserkreislauf geführt wird, fällt künftig auch kein Abwasser mehr an. Bei einem angenommenen CO 2 -Vorteil des R-Betons von 4,00 Kilogramm pro Tonne gegenüber dem Normalbeton (Quelle: www.beton-rc.ch ) könnten durch die Rückgewinnung von jährlich 90.000 Tonnen an RC-Gesteinskörnung rund 360 Tonnen an CO 2 eingespart werden. Das Projekt besitzt großen Modellcharakter, da es auf alle gängigen Bauschuttaufbereitungsanlagen, die derzeit noch nach dem alleinigen Prinzip der Trocken- oder konventionellen Nassaufbereitung arbeiten, übertragbar ist. Für diese Erweiterung kommen derzeit in Deutschland rund 2.640 Anlagen mit einer Gesamtkapazität von 75,2 Mio. Tonnen Bauschutt in Frage.
Branche: Baugewerbe/Bau
Umweltbereich: Ressourcen
Fördernehmer: Schneider & Sohn GmbH & Co. KG
Bundesland: Baden-Württemberg
Laufzeit: seit 2024
Status: Laufend
1
2
3
4
5
…
99
100
101