API src

Found 1001 results.

Related terms

Konzeptstudie zur Abwärmenutzung in einem Luftspeicher-Gasturbinenkraftwerk (LGT)

Die Einspeicherung von Druckluft in die Kavernen des LGT muss nahezu isotherm erfolgen. Die dabei anfallende Verdichtungswärme wird bisher in die Umgebung abgegeben. In der Studie werden Möglichkeiten untersucht und bewertet, diese und auch die Turbinenabwärme bei Turbinenbetrieb in Form von Dampf zu speichern. Mit dem gespeicherten Dampf wird beim Ausspeichern ein integrierter Gas-Dampf-Prozess realisiert, mit dem die gespeicherte Energie genutzt werden kann, was zu deutlichen Brennstoffeinsparungen führt.

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.7: Entwicklung von Adhäsionsvermittlerpeptiden mit Enzymfunktionalität zur Elimination von gelösten Stoffen

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.1: Optimierung des Adsorbermaterials für die Beschichtung mit Enzymen

(Semi-) dezentrales Abwasserbehandlungssystem, TP1.4: Entwicklung und Optimierung der Anlagensteuerung und des Anlagenmonitorings

Durchlässigkeits- und Fluxmessungen in porösen Aquifern

Die Kenntnis von hydraulischen Durchlässigkeiten wie auch von Wasser- und Verunreinigungsfluxen in porösen Grundwasserleitern ist von großer Bedeutung in vielen hydrogeologischen Belangen wie z.B. Beregnung, Versickerung, quantitative und qualitative Wasserwirtschaft, Risikoabschätzung bei Verunreinigungen, usw. Derzeit ist keine theoretisch gut fundierte Methode zur Messung horizontaler und vertikaler Durchlässigkeiten in der gesättigten Zone verfügbar und Methoden zur Messung von gesättigten Durchlässigkeiten in der ungesättigten Zone sind beschränkt, zeitaufwendig und fallweise unzuverlässig. Außerdem ist gegenwärtig keine Methode zur direkten Messung vertikaler Wasser- und Verunreinigunsfluxe in porösen Grundwasserleitern oder am Übergang zwischen Grund- und Oberflächengewässern bekannt. Das dargelegte Projekt basiert auf der Entwicklung einer exakten Lösung des Strömungsfeldes für das Ein- oder Auspumpen von Wasser durch eine beliebige Anzahl von unterschiedlichen Filterabschnitten entlang eines ansonsten undurchlässigen Filterrohres bei verschiedenen Randbedingungen. Diese Lösung erlaubt die Ermittlung von Formfaktoren der Strömungsfelder, die zur Berechnung hydraulischer Durchlässigkeiten aus Einpressversuchen nötig sind. Die derzeit angewendeten Formeln können mit der genauen Lösung verglichen und der Einfluss anisotroper Durchlässigkeiten kann miteinbezogen werden. Eine doppelfiltrige Rammsonde wird zur bohrlochfreien Messung horizontaler und vertikaler Durchlässigkeiten in verschiedenen Tiefen unter dem Grundwasserspiegel vogeschlagen. Der Test besteht aus zwei Teilen: (1) Einpressen durch beide Filterabschnitte und (2) Zirkulation zwischen den Filtern. Die gleiche Sondenkonfiguration wird für die direkte und gleichzeitige Messung lokaler, kumulativer, vertikaler Wasser- und Verunreinigungsfluxe nach dem passiven Fluxmeter-Prinzip vorgeschlagen. Ohne zu pumpen werden die beiden Filterabschnitte hiebei durch eine mit Tracern geladene Filtersäule hydraulisch verbunden. Der vertikale Gradient im Testbereich treibt einen Fluss durch den Filter, der kontinuierlich Tracer auswäscht und Verunreinigungen im Filter hinterlässt. Aus der Analyse des Filtermaterials zur Bestimmung der Tracer- und Verunreinigungsmengen nach dem Test werden mit Kenntnis des Strömungsfeldes um die Sonde die Wasser- und Verunreinigungsfluxe bestimmt. Eine kegelförmige, doppelfiltrige Rammsonde wird weiters vorgeschlagen, um gesättigte Durchlässigkeiten sowohl über als auch unter dem Grundwasserspiegel direkt messen zu können. Die Methode basiert auf stationärer, gesättigt/ungesättigt gekoppelter Strömung aus kugelförmigen Hohlräumen. Die Möglichkeit einer transienten einfiltrigen Methode und einer Methode zur Messung anisotroper Durchlässigkeiten wird beurteilt. Die vorgeschlagenen theoretischen Konzepte werden ausgearbeitet und anhand von Laborversuchen überprüft.

Nichtöffentliche Wasserversorgung

<p>Energieerzeuger, Industrien, Bergbauunternehmen und Landwirtschaft decken ihren Wasserbedarf fast ausschließlich über eigene Gewinnungsanlagen. 2022 entnahmen sie 12,5 Mrd. m³ Wasser. In Deutschland wird das meiste Wasser mit 6,9 Mrd. m³ von der Energieversorgung entnommen. Für die Anlagenkühlung nutzen die Betriebe der nicht öffentlichen Wasserversorgung 2022 ca. 83 % des entnommenen Wassers.</p><p>Sinkender Wasserbedarf, sinkende Wasserentnahmen</p><p>Im Jahr 2022 entnahmen Energieversorgung, Bergbau und verarbeitendes Gewerbe sowie die Landwirtschaft insgesamt eine Wassermenge von etwa 12,5 Milliarden Kubikmeter (Mrd. m³), im Wesentlichen über eigene Gewinnungsanlagen aus Oberflächengewässern oder Grundwasser. Die Wasserentnahmen in Deutschland für die Energieversorgung, Bergbau und verarbeitendes Gewerbe waren 2022 weiterhin rückläufig. Seit dem Jahr 1991 sanken die Wasserentnahmen für Energie, Bergbau und verarbeitendes Gewerbe über eigene Gewinnungsanlagen von 41,3 Mrd. m³ auf 12,1 Mrd. m³. &nbsp;</p><p>Die Betriebe verwenden nicht nur selbstgewonnenes Wasser, sondern erhalten zusätzlich einen geringen Teil - den sogenannten Fremdbezug - über die <a href="https://www.umweltbundesamt.de/daten/wasser/wasserwirtschaft/oeffentliche-wasserversorgung">Öffentliche Wasserversorgung</a> oder aus anderen Unternehmen. Im Jahr 2022 ergab sich insgesamt aus Eigengewinnung und Fremdbezug eine Wassermenge von 14,3 Mrd. m³ für die Betriebe der Energieversorgung, des verarbeitenden Gewerbes, des Bergbaus und der Landwirtschaft. Dies war die Wassermenge, die in den Betrieben als Kühl- oder Produktionswasser, Bewässerungswasser beziehungsweise für die Versorgung der Belegschaft genutzt wurde. Tatsächlich war das Wasseraufkommen der Betriebe geringer, da rund 0,9 Mrd. m³ dieser Wassermenge ungenutzt an Dritte abgegeben wurde.</p><p>Hoher Kühlwasserbedarf bei der Energieversorgung</p><p>Der Wasserbedarf der einzelnen Branchen ist unterschiedlich hoch. In Deutschland hat die Energieversorgung den größten Wasserbedarf. Die entnommene Wassermenge wird fast ausschließlich zu Kühlzwecken eingesetzt.</p><p>Für die Energiebereitstellung entnahmen die Energieversorger im Jahr 2022 ca. 6,9 Mrd. m³, das sind rund 38,6 % der Gesamtentnahmen von 17,9 Mrd. m³ aller relevanten Nutzergruppen . Dabei deckten die Kraftwerke ihren Wasserbedarf nahezu vollständig über eigene Gewinnungsanlagen aus Oberflächengewässern. Der fremdbezogene Anteil lag bei etwa 3,6 %, dadurch lag das Wasseraufkommen für die Energieversorgung bei 7,2 Mrd. m³. Das Wasser wurde nach dem Gebrauch zu großen Teilen wieder in die anliegenden Oberflächengewässer eingeleitet (siehe Abb. „Wasseraufkommen für die Energieversorgung“). Verdunstet sind rund 0,45 Mrd. m³ bei der Kühlung von Kraftwerken.</p><p>Bei den Unternehmen des Bergbaus und der Verarbeitenden Gewerbe verzeichnen wir eine andere Entwicklung. Zwar nahm auch hier der Wasserbedarf kontinuierlich ab, aber seit dem Jahr 2001 stieg der Anteil der Wassermenge, die über Dritte bezogen wurde an. Zum Vergleich: Im Jahr 2001 betrug die Wassermenge aus Eigengewinnung und Fremdbezug ca. 8,65 Mrd. m³, der Anteil des Fremdbezuges betrug 10,3 %. Dagegen stieg die Fremdversorgungsquote im Jahr 2019 auf 23,3 % bei einem Wasseraufkommen von ca. 7,0 Mrd. m³. Dies scheint sich wieder zu ändern: Im Jahr 2022 sanken der Anteil aus Eigengewinnung als auch der Fremdbezug, zusammen um rund 5 % gegenüber 2019 (siehe Abb. „Wasseraufkommen im Bergbau und verarbeitenden Gewerbe“).</p><p>Effizienter Wassereinsatz durch Mehrfach- und Kreislaufnutzung</p><p>Im Jahr 2022 betrug das eingesetzte Frischwasser in Deutschland für die Hauptsektoren Bergbau, verarbeitendes Gewerbe, Energieversorgung und Landwirtschaft insgesamt 14,3 Mrd. m³. Seit 1991 ging die eingesetzte Wassermenge in Kühl- und Produktionsprozessen von 29 Mrd. m³ deutlich &nbsp;zurück. Das liegt in erster Linie an dem effizienten Umgang mit Wasser, der auch durch Mehrfach- und Kreislauftechnologien unterstützt wird. Mehrfachnutzung bedeutet, dass die eingesetzte Wassermenge nacheinander für verschiedene Zwecke genutzt wurde, bei einer Kreislaufnutzung wurde das Wasser umgewälzt und für denselben Zweck wiedergenutzt.</p><p>Kühlwasser: Regionale Unterschiede beachten</p><p>Die Auswertung des für die Kühlung in allen Sektoren eingesetzten Wassers verdeutlicht regionale Unterschiede. So ist der Kühlwasserbedarf in &nbsp;den meisten Flussgebietseinheiten (FGE) deutlich gesunken: In der FGE Rhein 2022 auf 5,8 Mrd. m³ (2013: 8,2 Mrd. m³) und in der FGE Weser von 3,5 Mrd. m³ 2013 auf 1,3 Mrd. m³ 2022. Die für Kühlzwecke eingesetzte Wassermenge in der FGE Elbe &nbsp;ist nach zwischenzeitlichem Anstieg Mitte der 2010er Jahre 2022 deutlich auf 1,4 Mrd. m³ zurück gegangen (2013: 3,4/ 2016: 4,3 Mrd. m³). In der FGE Donau ist die eingesetzte Kühlwassermenge 2022 mit 1,9 Mrd. m³ gegenüber 2016 leicht angestiegen (1,7 Mrd. m³). In allen anderen FGE liegen die eingesetzten Kühlwassermengen auf sehr viel niedrigerem Niveau.</p><p>Nutzung verschiedener Wasserquellen</p><p>Im Jahr 2022 gewannen die produzierenden und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>⁠ etwa 76,6 % ihrer Wassermenge aus Oberflächengewässern, das heißt aus Flüssen, Seen oder Talsperren sowie aus Meer- und Brackwasser und z.B. Niederschlag. Weitere 17,1 % entnahmen sie aus Grund- und Quellwasser sowie etwa 6,4 % aus Uferfiltrat und angereichertem Grundwasser.</p><p>Interessant ist ein Vergleich mit der Landwirtschaft. Im Jahr 2016 betrugen die Wasserentnahmen für die Landwirtschaft etwa 0,3 Milliarden Kubikmeter, im Jahr 2022 bereits 0,45 Mrd. m³. Der Anteil an den Gesamtwasserentnahmen betrug 2022 2,5%. Insbesondere für die Bewässerung versorgt sich die Landwirtschaft aus Grundwasservorkommen. Die Grundwasserentnahmen lagen im Jahr 2022 bei ca. 69,1 %, 27,8 % wurde aus Oberflächengewässern entnommen (siehe Abb. „Wassergewinnung nichtöffentlicher Betriebe 2022“).</p>

Oekologisches Wohngebiet Heerdt

Das OEKOTOP HEERDT ist ein beispielhaftes Modell fuer zukuenftiges staedtisches Leben. Wir schaffen ein ganzheitliches oekologisches System, das moeglichst autonom sein soll. Sonne und Wind versorgen uns mit Energie, Abwaesser werden durch Wurzelraumentsorgung geklaert, Grauwasser wird wiederverwendet, Biogaerten und Permakulturpark liefern gesundes Obst und Gemuese zur Selbstversorgung, naturnah gehaltene Freiraeume schaffen Lebensbereiche fuer bedrohte Pflanzen und Tiere. Wohnen, Arbeiten und Erholen sind nicht mehr getrennt. Wir schaffen neue oekologisch orientierte Arbeitsplaetze. Wir entwickeln soziale Wohnkonzepte mit vielfaeltigen Nutzungsmoeglichkeiten fuer alle Altersgruppen. Die natuerlichen Freiraeume dienen als Naherholungsgebiete und Spielbereiche. Intensive oekopaedagogische Arbeit unterstuetzt die Entwicklung des Systems. Wir arbeiten mit aehnlichen Projekten ueberregional zusammen. Wir setzen das Konzept gemeinsam mit Fachleuten in prozesshafter Planung um und realisieren es moeglichst weitgehend in Selbsthilfe. Die sozialoekologische Tradition wird weiter verfolgt (Organisation der praktischen Arbeiten, Mitgestalten von Wohnkonzepten, soziale Freiraumgestaltung und aehnliches). Das Projekt soll staendig wissenschaftlich begleitet werden.

Energieeffizienteres Recyclingverfahren von Altpapier

Die Papierfabrik Palm GmbH & Co. KG, mit Unternehmenssitz in Aalen (Baden-Württemberg), plant Wellpappenrohpapier aus Altpapier zukünftig äußerst energieeffizient bei hoher Qualität herzustellen. Im Vergleich zu konventioneller Technik wird der Energieverbrauch mit einer neuen Technologie um 27 Prozent reduziert. Das Pilotprojekt wird aus dem Umweltinnovationsprogramm mit über 770.000 Euro gefördert. Wellpappenrohpapiere, die das Ausgangsprodukt für Verpackungen sind, werden in einem ständig optimierten Recyclingprozess zu 100 Prozent aus verschiedenen Sorten Altpapier hergestellt. Dabei kommt es vor, dass auch noch wertvolle verwertbare Fasern gemeinsam mit den im Altpapier vorhandenen Störstoffen aussortiert werden und dem Prozess verloren gehen. Daher ist es sinnvoll, die Auflöseaggregate den jeweiligen Festigkeitseigenschaften der verwendeten Altpapiere anzupassen. Mit einer neuartigen Zerfaserungstechnologie für Altpapier soll das bei der Papierfabrik Palm umgesetzt werden. Ziel des innovativen Projektes ist es, die Faserausbeute bei geringerem Energieeinsatz auf nahezu 100 Prozent zu erhöhen. Die technische Lösung hinter dem optimierten Recyclingprozess ist das 'Green Pulping Concept', bei dem zwei Pulpingtechnologien miteinander verknüpft werden. Bei einer jährlichen Produktionsmenge von 750.000 Tonnen Wellpappenrohpapiere kann das Familienunternehmen so 7.440 Megawattstunden Energie einsparen und als Folge dessen den Ausstoß von CO2-Emissionen um 2.403 Tonnen verringern. Bedingt durch die hohe Festigkeit des aufbereiteten Papiers werden zudem weniger chemische Additive eingesetzt und das Kreislaufwasser wird entlastet. Die innovative Technologie ist grundsätzlich auch auf andere Papierfabriken übertragbar, sodass ein Multiplikatoreffekt für die gesamte Branche möglich ist. Mit dem Umweltinnovationsprogramm wird die erstmalige, großtechnische Anwendung einer innovativen Technologie gefördert. Das Vorhaben muss über den Stand der Technik hinausgehen und sollte Demonstrationscharakter haben.

Entfernung von toxischen Schwermetallen aus industriellen Abwässern unter Verwendung immobilisierter Makroalgenbiomasse

Mit dem Projekt wird das Ziel verfolgt, ein wirtschaftlich einsetzbares Verfahren zur Schwermetallentfernung auf der Grundlage von Algenbiomasse zu entwickeln. Die Grundlage für die Antragstellung bilden die Ergebnisse, die zur Abtrennung von Schwermetallen aus der wässrigen Phase im Sonderforschungsbereich 193 der Deutschen Forschungsgemeinschaft 'Biologische Behandlung industrieller und gewerblicher Abwässer' an der Technischen Universität Berlin in der 3. und 4. Förderphase von 1997 bis 2001 unter Verwendung von Mikroalgenbiomasse erreicht wurden. Mit dem Forschungsvorhaben soll versucht werden, dem Problem der Bereitstellung preiswerter Biomasse näher zu kommen. Hierzu können marine Makroalgen, die aus dem Meer gewonnen werden oder die bereits zur Wertstoffgewinnung verwendet werden, dienen. Bisher sind in den Teilprojekten F2 und F3 des Sonderforschungsbereichs 193 der Deutschen Forschungsgemeinschaft 30 verschiedene Mikroalgen aus unterschiedlichen Bezugsquellen eingesetzt worden. Der gegenwärtige Stand der Untersuchungen im Hinblick auf Aufnahmekapazität und -geschwindigkeit der Schadstoffe lässt Rückschlüsse auf eine erfolgversprechende technische Anwendungsmöglichkeit zu. Voraussetzung dafür ist die Lösung des Problems des durch die Kultivierungsbedingungen für die Mikroalgen noch zu hohen Preises für die Biomasse. Zeigen Makroalgen im Vergleich zu den Mikroalgen ähnliche positive Eigenschaften im Hinblick auf die Aufnahmefähigkeit (Kapazität, Selektivität) für Schwermetallionen, so könnten Immobilisate auf der Basis von Makroalgenbiomasse eine Alternative darstellen. Neben den bereits im Sonderforschungsbereich 193 eingesetzten Metallen Blei, Nickel, Cadmium, Zink und Kupfer ist die Ausdehnung der Untersuchungen auf weitere Metalle geplant, die als Kontaminationen in der Abwasseraufbereitung unterschiedlicher Herkunftsquellen eine wichtige Rolle spielen. Vorgesehen ist eine Erweiterung auf die Metalle Chrom (Cr+3) und Arsen (As). Der Schwerpunkt der Untersuchungen sollte auf industriell nutzbaren preiswerten Makroalgen liegen, die in großer Menge als Biomassenquelle vorhanden sind und leicht beschafft werden können.

Prozesswasserrecycling - innovative Prozesswasseraufbereitungsanlage

Das mittelständische Logistikunternehmen Neumann Transporte und Sandgruben GmbH & Co. KG gehört zur Neumann Gruppe GmbH mit Sitz in Burg und ist als Dienstleister in der Entsorgungs- und Recyclingwirtschaft tätig. In Reesen (Sachsen-Anhalt) gibt es eine Schlackenassaufbereitungsanlage, in der die Asche aus Müllverbrennungsanlagen einen Nassaufbereitungsprozess durchläuft. Die Schlackenassaufbereitung ist ein sehr wasserintensiver Prozess, bei dem Abwässer mit hohen Salzfrachten entstehen. Bisher werden die prozessbedingten Abwässer aufwändig aufbereitet, per Straßentransport in eine Industriekläranlage befördert und entsorgt. Für den Aufbereitungsprozess der Schlacke werden Prozessfrischwassermengen benötigt, die aktuell dem Grundwasserreservoir entnommen werden. Um den Transportaufwand für die Abwässer zu vermeiden und die Grundwasserentnahme zu minimieren, plant das Unternehmen mittels innovativer Abwasseraufbereitung (Umkehrosmose) einen nahezu geschlossenen Stoffkreislauf zu schaffen. Gleichzeitig verbessert sich damit auch die Qualität des mineralischen Rückstandes, so dass von einer besseren Verwertbarkeit auszugehen ist. Das in der Umkehrosmose entstehende Konzentrat (Permeat) soll in einer Vakuumverdampfungsanlage am Standort des Müllheizkraftwerks Rothensee behandelt werden. Gleichzeitig können Synergien am Standort der Abfallverbrennungsanlage genutzt werden, wie bspw. die Abwärme aus der Kraft-Wärme-Kopplung, das nahezu ammoniakfreien Destillats der Verdampferanlage für technische Zwecke und das Permeat der Umkehrosmose als Kühlwassernachspeisung für den Kühlturm. Die Innovation des neuen Verfahrens besteht darin, dass mittels Kombination und Weiterentwicklung bereits bestehender Recyclingverfahren erstmalig Prozesswasser aus der Schlackeaufbereitung behandelt und der Stoffkreislauf nahezu geschlossen werden kann. Insgesamt kann der Einsatz von Frischwasser nahezu vollständig ersetzt und weitgehend auf Grundwasserentnahmen verzichtet werden. Zusätzlich können Lärmemissionen, Energieverbrauch und Deponievolumen reduziert werden. Im Übrigen können mit der Umsetzung des Projekts jährlich 1.728 Tonnen CO2-Äquivalente, also etwa 86 Prozent, eingespart werden.

1 2 3 4 599 100 101