API src

Found 5115 results.

Related terms

Supplement to: Rheological benchmark of silicone oils used for analog modeling of short- and long-term lithospheric deformation

Abstract

Climate Simulation with CLM, Scenario B1 run no.1, North Atlantic region

[ Derived from parent entry - see the respective metadata entry ] The experiment CLM_B1_ZS contains Northern European regional climate simulations of the years 2070-2099 on a rotated grid (CLM non hydrostatic, 0.44 deg. hor. resolution, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC SRES B1 (EH5-T63L31_OM-GR1.5L40_B1_1_6H), which describes a storyline with rapid change in economic structures toward a service and information economy, with reductions in material intensity and the introduction of clean and resource-efficient technologies. The model region starts at -19.36/-40.48 (lat/lon in rotated coordinates; centre of lower left corner of the domain) with rotated North Pole at 21.3/-175.0 (lat/lon). The number of grid points is 80/146 (lat/lon). The sponge zone (numerically unreliable boundary grid points) consists of 8 gridboxes at each border. EH5-T63L31_OM-GR1.5L40_B1_1_6H were nudged during the simulations (spectral nudging,von Storch, H., A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev, 2000 ) The regional model variables include two-dimensional near surface fields and atmospheric fields on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa) for zonal and meridional wind, temperature and pressure. The time interval of the output fields is 3 hours. Please contact sga"at"dkrz.de for data request details. The output format is netCDF. Experiment with CLM 2.4.6 on HPC Cluster ( blizzard ).

Climate Simulation with CLM, Scenario B1 run no.1, North Atlantic region

[ Derived from parent entry - see the respective metadata entry ] The experiment CLM_B1_ZS contains Northern European regional climate simulations of the years 2070-2099 on a rotated grid (CLM non hydrostatic, 0.44 deg. hor. resolution, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC SRES B1 (EH5-T63L31_OM-GR1.5L40_B1_1_6H), which describes a storyline with rapid change in economic structures toward a service and information economy, with reductions in material intensity and the introduction of clean and resource-efficient technologies. The model region starts at -19.36/-40.48 (lat/lon in rotated coordinates; centre of lower left corner of the domain) with rotated North Pole at 21.3/-175.0 (lat/lon). The number of grid points is 80/146 (lat/lon). The sponge zone (numerically unreliable boundary grid points) consists of 8 gridboxes at each border. EH5-T63L31_OM-GR1.5L40_B1_1_6H were nudged during the simulations (spectral nudging,von Storch, H., A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev, 2000 ) The regional model variables include two-dimensional near surface fields and atmospheric fields on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa) for zonal and meridional wind, temperature and pressure. The time interval of the output fields is 3 hours. Please contact sga"at"dkrz.de for data request details. The output format is netCDF. Experiment with CLM 2.4.6 on HPC Cluster ( blizzard ).

Markt für Nickel, Klasse 1

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.

Explanation of the Call for Research and Development Project (PDF, 106 KB)

Call for Research and Development Projects Explanation of the Call for Research and Development Project In the course of a call for research and development projects, project outlines for research topics can be submitted electronically by use of the e-mail address forschungsauftraege@bge.de. In case of collaborative projects, the project outlines must be submitted by the collaborative coordinator. The project outline, which should not exceed 15 pages (minimum font size Arial 10), must show the requirements concerning content and form for a research project pursuant to Section 116 of the Act against Restraints of Competition (Competition Act – „GWB“). The following information is required: •Short name, title (number of the call for expressions of interest), please do not use acronyms •For collaborative projects: details of the coordinator and contact person of the individual project partners •Detailed justification that this project is a research and development order and that the requirements of Section 116 of the GWB are fulfilled and that this justifies a direct commission •Presentation of the state of science and technology and the degree of innovation •Qualification and expertise of the applicant and, if applicable, of the project partners •Detailed description of the work on the issues and objectives of the project outlined in the call for expressions of interest, including the structure of the work with corresponding milestones, in case of collaborative projects, an additional description of the distribution of tasks and tasks of the project partners •Estimated total expenditure and presentation of full costs, broken down by personnel and material resources, in case of collaborative projects for the individual project partner in each case Research institutions are free to add further points which they consider relevant for an assessment of their proposal. As per 2021/12/08 www.bge.de Page 1 of 2 Call for Research and Development Projects Procedure of the Call for Research and Development Project The project outlines received will compete with each other for the corresponding call for research and development projects and will be evaluated according to the following criteria: •Fulfilment of the preconditions pursuant to Section 116 of the GWB for a direct commission, •Presentation of the expert work to achieve the issues and objectives of the project stated in the call for expressions of interest, •Qualification and Expertise of the applicants (among other things, completeness and complementarity of the consortium with regard to the achievement of the project objectives, number and quality of publications related to the research topic), •Work planning (resource planning, milestone planning/termination criteria, effort and time planning etc.), •Economic efficiency (adequacy of costs or expenditures) Based on the evaluation by the specialized division and the Materials Management Division of the Bundesgesellschaft für Endlagerung mbH (BGE), the scientific questions stated in the call for expressions of interest are selected and commissioned accordingly. There is no legal entitlement to commissioning by the BGE. Implementation and Quality Assurance of a Research and Development Project The contractor shall carry out the project on the basis of the state of the art in science and technology and documents the results gained as a final report. The results gained and the final report are to be published basically in the name of the contractor and transmitted to the BGE. The expert and formal quality assurance is the responsibility of the contractor; in this context, the documents created are to be checked for sufficient processing depth and for formal requirements in terms of good scientific practice. Accordingly, the BGE basically reserves the right, after its own technical review, to endorse the results in whole or in part. The publication of the project results in open access journals, which are subject to scientific quality assurance within the framework of the peer review procedure, is explicitly desired on the part of the BGE. As per 2021/12/08 www.bge.de Page 2 of 2

Störfall

Für Betriebe und Anlagen, in denen besonders gefährliche Stoffe oder Gefahrstoffe in großen Mengen gehandhabt werden, werden über die üblichen Umweltschutzbestimmungen hinaus zusätzliche umfangreiche Sicherheits-, Vorsorge- und Überwachungsmaßnahmen gefordert. Auf Grund der Chemiestandorte mit ihren vielfältigen Produktlinien, Stoffkreisläufen und Technologien besitzt die Störfallvorsorge in Sachsen-Anhalt eine erhebliche Bedeutung. Die Fachbehörde erarbeitet die technisch-naturwissenschaftlichen Grundlagen und Hintergrundinformationen für den Vollzug des Störfallrechts und die entsprechende EU-Berichterstattung. Folgende Schwerpunkte sind von der Fachbehörde zu bearbeiten: - Erarbeitung von Grundlagen zur landeseinheitlichen Umsetzung der Seveso-II-Richtlinie und der Störfall-Verordnung, - Ermittlung von Gefahrenpotenzialen und Schwachstellen in störfallrelevanten Anlagen, - gutachterliche Tätigkeit hinsichtlich der Prüfung der Voraussetzungen der Bekanntgabe von Sachverständigen nach § 29 a BImSchG, - zentrale Erfassung, Analyse und Auswertung von Störfällen und Schadensereignissen, - Prüfung des Standes der Anlagensicherheit und - Wahrnehmung der EU-Berichterstattung (Zuständigkeitsverordnung). Eine Recherche für die Kategorie "Technisches Versagen" in der Datenbank des LAU "Schadensereignisse" ergab, dass insbesondere nicht ausreichende Werkstoffeigenschaften (Korrosion, Materialfehler, Materialermüdung) zu Schäden führten. Aber z. B. auch der Ausfall der Elektroenergieversorgung kann zu erheblichen Gefährdungen führen. "Unbekannte Ursachen" sind primär bei Bränden zu verzeichnen, bei denen ein mutwilliges Fremdverschulden nicht von vornherein auszuschließen ist. Die meisten Schadensereignisse werden durch "Menschliches Versagen" verursacht. Dabei handelt es sich häufig um nicht fachgerechtes Vorgehen bei Reparatur- und Instandsetzungsarbeiten, organisatorische Fehler, unsachgemäße Anlagenbedienung und unzulässiger Umgang mit Stoffen. Auch nicht sachgerechte Transportvorgänge (Straße/Schiene) erforderten den Einsatz der Umweltbehörden. Derartige Schadensereignisse erscheinen besonders problematisch, da sie an beliebigen Orten, auch inmitten von Wohngebieten, eintreten können. Vorsorge-Maßnahmen lassen sich nur bedingt planen. Diese Tatbestände fanden in der Seveso-II-RL (967/82/EG) bzw. in deren Umsetzung als Störfall-VO 2000 durch die Einführung eines Umweltsicherheitsmanagement in einem Betriebsbereich seine Auswirkung.

BGE and BGR organise “Clay Conference” in Hanover

Experts discuss the disposal of radioactive waste in clay and clay rocks The Bundesgesellschaft für Endlagerung (BGE), in collaboration with the Federal Institute for Geosciences and Natural Resources (BGR), is organising the 9th International Conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement from 25 to 28 November 2024 in Hanover. This international conference offers experts from various disciplines an important scientific platform for dealing with aspects of argillaceous (clay-containing) host rocks and geotechnical barriers to the disposal of radioactive waste and for exchanging information on current developments in the field of research into these topics. The Clay Conference was organised for the first time in 2002 by the French implementer, the French National Agency for Radioactive Waste Management (ANDRA). Around 460 scientists from over 20 countries have registered for this year’s instalment of the conference series at the Hannover Congress Centrum (HCC). The Clay Conference focuses on the final disposal of radioactive waste in clay-containing host rocks and on geotechnical bentonite barriers in the repository. In this context, the term clay includes both sedimentary clay rocks and industrially available bentonites in the form of speciality clays. Clay rocks serve as a host rock for the emplacement of waste and as a geological barrier. Bentonites are used as backfill material for geotechnical barriers in both clay-containing and crystalline host rock. Experts from the fields of geology, mineralogy, geochemistry, hydrogeology, geomechanics, materials science and engineering will come together at the conference to discuss multidisciplinary issues. The specialist programme of the Clay Conference encompasses lectures in seven plenary sessions, including keynote speeches, 18 parallel sessions, over 230 poster presentations and a panel discussion. The event also offers an extensive scientific supporting programme. The BGE offers guided tours of the Morsleben repository and the Konrad mine, while the BGR offers guided tours of its laboratories. Further information on the Clay Conference: https://clayconference2024.de/

Forschungssteckbrief zum Projekt "Enhancement of Bentonite Models for High Temperature Ranges up to 200°C (BENTEREST)" (PDF)

Steckbrief für Forschungsvorhaben Enhancement of Bentonite Models for High Temperature Ranges up to 200°C Kurztitel/ ggf. Akronym:Benterest Projektziel:Ziel des Vorhabens ist die Weiterentwicklung von numerischen Werkzeugen und gekoppelten thermisch-hydraulisch-mechanischen (THM)-Stoffmodellen für Bentonit, um eine rechnerische Simulation von gekoppelten THM-Prozessen in Bentonit bei Temperaturen ober­ halb von 100°C zu ermöglichen. Die Leistungsfähigkeit der entspre­ chenden Werkzeuge soll durch die Nachrechnung von Versuchen im Rahmen des HotBENT-Projektes im Felslabor Grimsel gezeigt wer­ den. Forschungsfeld:Endlagerplanung Projektpartner:BGE TECHNOLOGY GmbH (BGE TEC) Budget (Netto):875.900 Euro Projektlaufzeit:11/2022 – 06/2027 Forschungsauftrags- nummer:-­ Weiterführende Informationen:HotBENT Aims & Objectives (grimsel.com) Mechanistic understanding of gas transport in clay materials (GAS) | Eurad (ejp-eurad.eu) Influence of temperature on clay-based material behaviour (HITEC) | Eurad (ejp-eurad.eu) Projektbeschreibung Benterest is eng mit dem In-situ-Experiment HotBENT, das im Felslabor Grimsel durchgeführt wird, verknüpft und führt umfängliche Simulationen von thermisch-hydraulisch-mechanischen (THM) Prozessen in Bentonit durch. Das Leistungsvermögen der zugrundeliegenden Modelle sowie der Simulationen wird durch die Neuberechnung von Experimenten und auf Basis von Daten aus dem HotBENT Experiment dargestellt. Das fünf Jahre umfassende HotBENT Experiment besteht aus vier Heizelemente in zwei Sektoren und erlaubt den teilweisen Rückbau und die Fortführung von Experimenten über 20 Jahre. Benterest richtet sich an den Zielen von HotBENT aus, das darauf abzielt, THM Prozesse in Bentonit bei Temperaturen über 100°C fundiert zu charakterisieren. Im Detail werden folgende Aufgaben bearbeitet: 1. Untersuchung der Auswirkungen hoher Temperaturen (>150°C) auf die Leistung von Dok-ID: 12031452 – Stand:11.03.2024 www.bge.de Seite 1 von 3 Steckbrief für Forschungsvorhaben 2. 3. 4. 5. Bentonit, insbesondere des Einflusses von hoher thermischer Belastung an und nahe der Erhitzeroberfläche. Verbesserung bestehender Datenbanken und des Verständnisses von Bentonitversatz bei hohen Temperaturen und unter Berücksichtigung von endlagerrelevanten Größenordnungen und In-situ-Bedingungen. Prüfung und Bestätigung der Vorhersagekraft von aktuellen konzeptionellen und numerischen Modellen, um vorherrschende Prozesse in Bentonit zu verstehen und zu beschreiben. Beurteilung möglicher Veränderungen im Bentonitversatz und Bewertung von deren Auswirkung auf anerkannte Sicherheitsfunktionen und –anforderungen. Untersuchung des chemischen Verhaltens von Bentonit unter erhöhten Temperaturen unter Einbeziehung von Modellen und Daten bestehender Laborexperimente. Parallel zu den experimentellen Arbeiten spielen numerische Modellierungen eine wichtige Rolle im Rahmen des HotBENT In-situ-Experiments. Unterschiedliche Modellierungscodes und –ansätze sollen getestet werden. Hierzu werden im Zusammenspiel mit Szenarien, die in einem Endlager auftreten können, Modellierungen inklusive TH-THM-THC und thermisch- hydraulisch-mechanisch-chemischen (THMC)-Prozessen mit unterschiedlichen Abstrahierungsgraden (1D bis 3D) durchgeführt. Mit diesem Ziel nehmen elf Institutionen aus sieben Ländern an den numerischen Arbeiten in HotBENT teil. Um die oben aufgeführten Ziele zu erreichen ist Benterest in die folgenden Arbeitspakete (APs) aufgeteilt: AP 1 – Weiterentwicklung des Bentonitmodells: Das Hauptziel dieses APs ist die Weiterentwicklung des Bentonit-Stoffmodells, das aktuell in OpenGeoSys (OGS) implementiert ist. Dieses Modell, basierend auf Mašín (2017), ist ein integraler Bestandteil laufender FuE Aktivitäten im Rahmen des Projektes PIONIER sowie der im Mai 2024 abgeschlossenen Projekte GAS und HITEC innerhalb des EURAD Programms. AP 2 – Test und Weiterentwicklung der Thermo-Richards-Mechanics (TRM)- Prozessklasse: Dieses AP hat zum Ziel das THM Prozessmodel in OpenGeoSys zu entwickeln, um komplexe Materialmodelle wie das Bentonitmodell in OGS nutzen zu können. Es beinhaltet Testphasen um die akurate numerische Abbildung von ungesättigten Prozessen unter Temperatureinflüssen für Bentonit abzusichern. AP 3 – Nachmodellierung von Laborversuchen aus HITEC: Nach Fertigstellung der Entwicklungsarbeiten und deren erfolgreichen Verifizierung soll in diesem AP die Nachmodellierung von Labortests aus HotBENT und aus früheren Forschungsprojekten wie EURAD HITEC durchgeführt werden. Diese Tests analysieren THM-Effekte im Bentonit unter Temperaturbedingungen von bis zu 150°C und stellen damit wichtige Validierungen der entwickelten numerischen Instrumente dar. Dok-ID: 12031452 – Stand:11.03.2024 www.bge.de Seite 2 von 3 Steckbrief für Forschungsvorhaben AP 4 – Modellierung des HotBENT-Versuches: Im AP 4 wird die numerische Modellierung des HotBENT Experiments durchgeführt. Dabei wird eine schrittweise Herangehensweise mit wachsender Komplexität verfolgt. AP 5 – Neuimplementierung des Bentonitmodells in Mfront: Aufgrund des komplexen Materialverhaltens von Bentonit zielt AP 5 auf eine Neuimplementierung des gewählten Modells in MFront ab, einem Codegenerator für Material-Modellierungen. Diese Arbeiten tragen maßgeblich dazu bei, dass das Know-How über die Entwicklung komplexer Modelle für Bentonit in Deutschland verfügbar gemacht wird. Die Implementierung in MFront trägt zur effektiven Prozessbearbeitung und Standardisierung bei. Dies ist von hoher Bedeutung für Langzeitsicherheitsuntersuchungen im Kontext der Standortauswahl für ein Endlager für hochradioaktive Abfälle. Referenzen Mašín, D., 2017. Coupled Thermohydromechanical Double-Structure Model for Expansive Soils. Journal of Engineering Mechanics 143, 04017067. https://asceli­ brary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001278 Dok-ID: 12031452 – Stand:11.03.2024 www.bge.de Seite 3 von 3

Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine

The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. © The Author(s) 2020

EU 000.03 - Gutachten über Qualitäten von Bremseinrichtungen an Fördermaschinen (PDF, nicht barrierefrei)

Physikalisch-Technische Bundesanstalt DECKBLATT ProjektPSP-ElementObJ.Kenn.AufgabeUANAANNNNNNNNNNNNNNNNNXAAXXAANNNN . NN 9K351314.30JOBRB0001 Lfd. Nr. Rev. 00 Seite : Titel der Unterlage: Gutachten über Qualitäten von Brems- einrichtungen an Fördermaschinen lfd.-Nr. 000.03 I Stand: Hai 84 Textnummer: Ersteller: WBK Stempelfeld : PSP-Element TP.. . 2.1.2:38 zu Plan-Kapitel: 3 •2 •4 • 4 Freigabe tor BehOfden Freigabe Im Projekt !)lese Unterlage unterliegt samt Inhalt dem Schutz des Urheberrechts sowie der Pflicht zur vertraulichen Behandlung auch nei Beförderung und Vernichtung und darf vom Empfanger nur auftragsbezogen genutzt, vervlelfaltlgt und Dritten zuganglich gemacht werden. Eine andere Verwendung und Weitergabe bedarf der ausdrOcklichen Zustimmung der PTB. V 89 / 788 / 1 Revisionsblatt ProjektPSP•ElementObj. Kenn.AufgabeUALfd. Nr.Rev. NAANNNNNNNNNNNNNNNNNXAAXXAANNNNNN 351314.30-------JDBRB000100 9K Titel der Unterlage: Gutachten über Qualitäten von Bremse in- richtungen an Fördermaschinen lfd.-Nr„ 000.03 Seite: II Stand: Mai 84 Rev. Revisionsst. Datum verant. Stelle Gegenzeichn. rev. Name Seite Kat. *) *) Kategorie R - redaktionelle Korrektur Kategorie V - verdeutlichen~e Verbesserung Kategorie ~ - substantielle Änderung Minctestens b..;i der Kategorie S müssen Erläuterungen angegeben werden. V 89 / 782 / 1 Eriäuterung der Revision WESTFALISCHE BERGGEWERKSCHAFTSKASSE Bergmännische Schul-, Prüf- und Forschungsanstalten SEILPRÜFSTELLE INSTITUT FÜR FÖRDERTECHNIK UND WERKSTOFFKUNDE Institutsleiter: G u t a c h t e n Ub e r Qualitäten von Bremseinrichtungen a n F~rdermaschinen im Auftrage der Physikalisch-Tec hnischen Bundesanstalt, Braunschweig, vom 13.3.1984 ( Nummer der Teilaurgabe: 2224.0 3)

1 2 3 4 5510 511 512