Das Projekt "Verbesserung der Erfassung von Windlasten an WEA Systemprüfständen" wird/wurde ausgeführt durch: RWTH Aachen University, Center for Wind Power Drives.Die Eingangslasten auf Windenergieanlagen (WEA) haben einen entscheidenden Einfluss auf Ausfälle des WEA-Triebstrangs. Diese Lasten setzen sich zusammen aus: Schub- und Radialkräfte sowie Dreh- und Biegemomenten. Mithilfe von bekannten Eingangslasten können Wirkungszusammenhänge zwischen Lasten und Schäden an Triebstrangkomponenten, wie Lagern oder dem Getriebe, abgeleitet werden. Die Erfassung der Eingangslasten einer WEA ist im Feld nicht möglich und an WEA-Systemprüfständen nur unzureichend genau. Daher hat das Projekt ErWind als Ziel einen rotierenden Sensor für Systemprüfstände bis 6 MW zu entwickeln der die Eingangslasten in allen sechs Freiheitsgraden erfassen kann und dabei eine Messunsicherheit von unter 3 % hat. Die Hauptaufgabe des CWD im Projekt liegt in der simulativen Abbildung des Sensors sowie dessen Auslegung mithilfe der entwickelten Simulationsmodelle. Außerdem wird im Rahmen des Projekts ein Prototyp des entwickelten Sensors auf dem WEA-Systemprüfstand des CWD getestet und verifiziert. Abschließend werden die Erkenntnisse des Tests genutzt, um den Sensor weiterzuentwickeln.
Das Projekt "Verbesserung der Erfassung von Windlasten an WEA Systemprüfständen, Teilvorhaben: Simulative Auslegung und experimentelle Verifizierung eines Sensors zur Messung der Windlasten an WEA-Systemprüfständen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: RWTH Aachen University, Center for Wind Power Drives.Die Eingangslasten auf Windenergieanlagen (WEA) haben einen entscheidenden Einfluss auf Ausfälle des WEA-Triebstrangs. Diese Lasten setzen sich zusammen aus: Schub- und Radialkräfte sowie Dreh- und Biegemomenten. Mithilfe von bekannten Eingangslasten können Wirkungszusammenhänge zwischen Lasten und Schäden an Triebstrangkomponenten, wie Lagern oder dem Getriebe, abgeleitet werden. Die Erfassung der Eingangslasten einer WEA ist im Feld nicht möglich und an WEA-Systemprüfständen nur unzureichend genau. Daher hat das Projekt ErWind als Ziel einen rotierenden Sensor für Systemprüfstände bis 6 MW zu entwickeln der die Eingangslasten in allen sechs Freiheitsgraden erfassen kann und dabei eine Messunsicherheit von unter 3 % hat. Die Hauptaufgabe des CWD im Projekt liegt in der simulativen Abbildung des Sensors sowie dessen Auslegung mithilfe der entwickelten Simulationsmodelle. Außerdem wird im Rahmen des Projekts ein Prototyp des entwickelten Sensors auf dem WEA-Systemprüfstand des CWD getestet und verifiziert. Abschließend werden die Erkenntnisse des Tests genutzt, um den Sensor weiterzuentwickeln.
Das Projekt "Verbesserung der Erfassung von Windlasten an WEA Systemprüfständen, Teilvorhaben: Entwicklung einer rechnerischen Echtzeitkompensation von Übersprecheffekten im Rahmen der Entwicklung eines neuartigen Messaufnehmers" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: RENK Test System GmbH.Die Erfassung der Eingangslasten einer Windenergieanlage (WEA) ist im Feld nicht möglich und an WEA-Systemprüfständen aktuell nur unzureichend genau. Daher hat das Projekt ErWind als Ziel einen rotierenden Sensor für Systemprüfstände bis 6 MW zu entwickeln, der die Eingangs-lasten in allen sechs Freiheitsgraden erfassen kann. Da es sich bei dem Sensor um einen monolithischen Messkörper handelt, werden signifikante Übersprecheffekte erwartet, welche sich durch die Geometrie und Beklebung nicht ausreichend reduzieren lassen. Des Weiteren ist mit Störungen im Messsignal durch parasitäre Nebeneffekte zu rechnen. Um diese Übersprecheffekte und Störungen hinreichend zu reduzieren, entwickelt RENK eine rechnerische Echtzeitkompensation basierend auf Kennlinien und Kennlinienfeldern, welche automatisiert aufgenommen werden.
Das Projekt "Verbesserung der Erfassung von Windlasten an WEA Systemprüfständen, Teilvorhaben: Telemetrische Datenerfassung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: MANNER Sensortelemetrie GmbH.Die Eingangslasten auf Windenergieanlagen (WEA) haben einen entscheidenden Einfluss auf Ausfälle des WEA-Triebstrangs. Mithilfe von bekannten Eingangslasten können Wirkungszusammenhänge zwischen Lasten und Schäden abgeleitet werden. Die Erfassung der Eingangslasten einer WEA ist im Feld nicht möglich und an WEA-Systemprüfständen unzureichend genau. Daher hat das Projekt ErWind als Ziel einen rotierenden Sensor für Systemprüfstände bis 6 MW zu entwickeln der die Eingangslasten in allen sechs Freiheitsgraden erfassen kann. MANNER Sensortelemetrie entwickelt im Rahmen des Projektes die telemetrische Datenerfassung mittels Precision time Protokoll um für die Genauigkeit benötigten nichtrotierenden Sensoren mit den rotierend erfassten Kräften zeitgenau zu erfassen und die somit für das Erfassungssystem benötigten zeitgerechten Daten zu liefern. Im Rahmen des Sensordesigns greift MANNER auf bisheriges Know-how bereits zuvor realisierten Mehrkomponentenaufnehmer zurück, um so ein Design zu schaffen, welches den Genauigkeitsanforderungen entspricht. Bei der Realisierung des Sensors übernimmt MANNER die aufwendige sensorische Applikation sowie telemetrische Ausstattung des Sensors inklusive der Herstellung des Telemetrie Systems mit dem im Rahmen des Projektes neuentwickelten Precision Time Protokoll für die erfassten Daten.
Das Projekt "Erstellung eines Leitfadens zum Bauen mehrgeschossiger Gebäude mit Holz unter expliziter Berücksichtigung von Windlasten, Teilvorhaben 3: Messung, numerische Simulation und Validierung" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Novicos GmbH.Das Ziel dieses Forschungsvorhabens ist die Entwicklung eines Leitfadens zur Realisierung hoher Gebäude aus Holz. Konkret soll die Fragestellung der Sicherung der Gebrauchstauglichkeit infolge von Windlasten als äußere dynamische Einwirkungen auf hohe Gebäude aus Holz betrachtet werden. Im Rahmen des zu entwickelnden Leitfadens werden Bauwerke und Bestandteile (Fassadenelemente, Befestigungen, Verbindungen) des mehrgeschossigen Bauens mit Holz schwingungstechnisch geprüft, analysiert und bewertet. Die Gesamtsteifigkeit des mehrgeschossigen Bauwerks ist maßgeblich von Steifigkeiten der Einzelbestandteile abhängig. Mit den Ergebnissen des Forschungsvorhabens wird ein entscheidender Beitrag zur Weiterentwicklung der Sicherheit von nachhaltigen Baustrukturen hinsichtlich ihrer Schwingungsanfälligkeit und Gebrauchstauglichkeit im Zuge von Planung und Umsetzung mehrgeschossiger Gebäude in Holzbauweise geleistet.
Das Projekt "Systematische Untersuchung des Einflusses von Geländestrukturen auf die Dynamik und Turbulenzcharakteristika bodennaher Windströmungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Fachbereich Erdsystemwissenschaften, Meteorologisches Institut.Neben der thermischen Schichtung bestimmt wesentlich der Turbulenzzustand eine Vielzahl der in der bodennahen Windgrenzschicht ablaufenden Strömungs- und Transportprozesse. Das vom Menschen wahrnehmbare Mikroklima, Windlasten oder z.B. die Windenergiegewinnung werden substanziell von Turbulenzphänomenen im bodennahen Wind beeinflusst. In der durch Orographie, Bebauung und Bewuchs unmittelbar beeinflussten bodennahen Windgrenzschicht ist die Dynamik des Windes hochkomplex und deshalb auch heute noch Gegenstand der Forschung. Turbulenzphänomene im bodennahen Wind können prinzipiell mit Hilfe von Naturmessungen oder mit Hilfe numerischer oder physikalischer Modelle untersucht werden. Die Repräsentativität und Verallgemeinerbarkeit von Naturversuchen zur Turbulenzcharakterisierung wird allerdings durch die begrenzte 'räumliche Auflösung' bzw. Datendichte und die ständig wechselnden, in der Regel nicht vollständig dokumentierbaren Strömungsrandbedingungen limitiert. Die an einem Standort erhobenen Naturdaten können nicht ohne vereinfachende Annahmen verallgemeinert und nur bedingt auf andere orographische Verhältnisse übertragen werden. Auch bei der mathematisch numerischen Modellierung kleinskaliger turbulenter Strömungs- und Transportprozesse wird auf eine Reihe vereinfachender Annahmen zurückgegriffen. Dennoch kann mit Hilfe partiell wirbelauflösender LES-Modelle ein deutlich besserer Einblick in die Dynamik des bodennahen Windes sowie die Wirkung der Turbulenz auf den bodennahen Stoff- und Impulstransport gewonnen werden. Voraussetzung ist, dass die für die entsprechende Modellanwendung ausreichende Güte der Simulationsergebnisse durch eine anwendungsbezogene, systematische und vollständige Modellvalidierung nachgewiesen wird. Im Projekt wird der Einfluss orographischer Strukturen auf die Turbulenzcharakteristik und Dynamik des bodennahen Windes erstmals systematisch mit Hilfe von Laborversuchen im Grenzschichtwindkanal untersucht und analysiert. Die bodennahe Windturbulenz in Raum und Zeit hinreichend auflösende Simulationen werden mit zeitgemäßer Messtechnik untersucht, um systematische Informationen zu turbulenten Impulsflüssen, Druck-Strömungs-Korrelationen und zum turbulenten Stofftransport in Abhängigkeit von der überströmten Orographie zu gewinnen und entsprechende Kausalzusammenhänge abzuleiten. Gleichzeitig werden für die systematische Validierung wirbelauflösender numerischer Modelle geeignete Referenzdatensätze mit bekannter und dokumentierter Datenqualität erzeugt. Das Projekt legt den Grundstein für einen systematischen Datenfundus, der bisher nicht existiert. Die experimentellen Daten werden noch während der Projektumsetzung in aufbereiteter, qualitätsgesicherter und dokumentierter Form potenziellen Nutzern in einer Referenzdatenbank im Internet zur Verfügung gestellt.
Das Projekt "Erstellung eines Leitfadens zum Bauen mehrgeschossiger Gebäude mit Holz unter expliziter Berücksichtigung von Windlasten" wird/wurde ausgeführt durch: Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut.Das Ziel dieses Forschungsvorhabens ist die Entwicklung eines Leitfadens zur Realisierung hoher Gebäude aus Holz. Konkret soll die Fragestellung der Sicherung der Gebrauchstauglichkeit infolge von Windlasten als äußere dynamische Einwirkungen auf hohe Gebäude aus Holz betrachtet werden. Im Rahmen des zu entwickelnden Leitfadens werden Bauwerke und Bestandteile (Fassadenelemente, Befestigungen, Verbindungen) des mehrgeschossigen Bauens mit Holz schwingungstechnisch geprüft, analysiert und bewertet. Die Gesamtsteifigkeit des mehrgeschossigen Bauwerks ist maßgeblich von Steifigkeiten der Einzelbestandteile abhängig. Mit den Ergebnissen des Forschungsvorhabens wird ein entscheidender Beitrag zur Weiterentwicklung der Sicherheit von nachhaltigen Baustrukturen hinsichtlich ihrer Schwingungsanfälligkeit und Gebrauchstauglichkeit im Zuge von Planung und Umsetzung mehrgeschossiger Gebäude in Holzbauweise geleistet.
Das Projekt "Erstellung eines Leitfadens zum Bauen mehrgeschossiger Gebäude mit Holz unter expliziter Berücksichtigung von Windlasten, Teilvorhaben 2: Schwingungsanalyse und -extrapolation" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Technische Universität Carolo-Wilhelmina zu Braunschweig, Institut für Baustoffe, Massivbau und Brandschutz, Fachgebiet Baustoffe.Das Ziel dieses Forschungsvorhabens ist die Entwicklung eines Leitfadens zur Realisierung hoher Gebäude aus Holz. Konkret soll die Fragestellung der Sicherung der Gebrauchstauglichkeit infolge von Windlasten als äußere dynamische Einwirkungen auf hohe Gebäude aus Holz betrachtet werden. Im Rahmen des zu entwickelnden Leitfadens werden Bauwerke und Bestandteile (Fassadenelemente, Befestigungen, Verbindungen) des mehrgeschossigen Bauens mit Holz schwingungstechnisch geprüft, analysiert und bewertet. Die Gesamtsteifigkeit des mehrgeschossigen Bauwerks ist maßgeblich von Steifigkeiten der Einzelbestandteile abhängig. Mit den Ergebnissen des Forschungsvorhabens wird ein entscheidender Beitrag zur Weiterentwicklung der Sicherheit von nachhaltigen Baustrukturen hinsichtlich ihrer Schwingungsanfälligkeit und Gebrauchstauglichkeit im Zuge von Planung und Umsetzung mehrgeschossiger Gebäude in Holzbauweise geleistet.
Das Projekt "Erstellung eines Leitfadens zum Bauen mehrgeschossiger Gebäude mit Holz unter expliziter Berücksichtigung von Windlasten, Teilvorhaben 1: Projektkoordination, experimentelle und numerische Untersuchungen zum Schwingungsverhalten" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut.Das Ziel dieses Forschungsvorhabens ist die Entwicklung eines Leitfadens zur Realisierung hoher Gebäude aus Holz. Konkret soll die Fragestellung der Sicherung der Gebrauchstauglichkeit infolge von Windlasten als äußere dynamische Einwirkungen auf hohe Gebäude aus Holz betrachtet werden. Im Rahmen des zu entwickelnden Leitfadens werden Bauwerke und Bestandteile (Fassadenelemente, Befestigungen, Verbindungen) des mehrgeschossigen Bauens mit Holz schwingungstechnisch geprüft, analysiert und bewertet. Die Gesamtsteifigkeit des mehrgeschossigen Bauwerks ist maßgeblich von Steifigkeiten der Einzelbestandteile abhängig. Mit den Ergebnissen des Forschungsvorhabens wird ein entscheidender Beitrag zur Weiterentwicklung der Sicherheit von nachhaltigen Baustrukturen hinsichtlich ihrer Schwingungsanfälligkeit und Gebrauchstauglichkeit im Zuge von Planung und Umsetzung mehrgeschossiger Gebäude in Holzbauweise geleistet.
Steckersolargeräte reduzieren eigene Stromkosten - auch für Mieter*innen Wie Sie mit Balkon-Solaranlagen umweltfreundlich Strom erzeugen Die Südausrichtung der Module liefert die besten Erträge, Ost- oder Westausrichtungen sind ebenfalls möglich. Ein einzelnes Modul (ca. 400 Watt) ist aus finanzieller Sicht in der Regel die optimale Größe, weil damit die Haushaltsgrundlast gedeckt werden kann. Batteriespeicher lohnen sich bei Steckersolargeräten in der Regel nicht. Achten Sie darauf, dass das Gerät die in Deutschland geltende Anschlussnorm VDE-AR-N 4105 erfüllt. Normale Schutzkontaktstecker sind für die Stromeinspeisung u. a. aus Gründen des Personenschutzes nicht zulässig. Organisieren Sie eine Sammelbestellung , um zusätzliche Fahrten und Kosten der Spedition zu reduzieren. Achten Sie auf eine normgerechte Montage , die auch Windlasten standhält. Melden Sie das Steckersolargerät im Marktstammdatenregister an. Nutzen Sie das Steckersolargerät möglichst lange. Entsorgen Sie es anschließend sachgerecht bei Ihrer kommunalen Sammelstelle. Gewusst wie Steckersolargeräte (auch: Balkonkraftwerke, Mini-PV) erzeugen aus Sonnenlicht klimafreundlichen Strom. Mit ihnen können auch Mieter*innen einfach und unbürokratisch einen Teil ihres Strombedarfs kostengünstig selbst erzeugen und damit einen Beitrag zum Umstieg auf erneuerbare Energien leisten. Süd-, Ost- oder Westausrichtung möglich: Nach Süden ausgerichtete Module liefern im Jahresverlauf die höchsten Erträge. Bei nach Osten oder Westen ausgerichteten Modulen sind ebenfalls gute Erträge zu erwarten. Bei diesen Ausrichtungen passen Stromerzeugung und Stromverbrauch möglicherweise besser zusammen, da die Stromerträge morgens (bei Ostausrichtung) bzw. am späten Nachmittag (bei Westausrichtung) höher sind. Senkrecht am Balkongeländer angebrachte Module (90° „Dachneigung“) liefern im Sommer niedrigere, im Winter dafür etwas bessere Erträge. (Teil-)Verschattungen der Module können den Stromertrag deutlich reduzieren. Rechnerisch vereinfacht liefern im optimalen Anstellwinkel südausgerichtete Module ihre volle Nennleistung während 950 Stunden eines Jahres, die sogenannten Volllaststunden (tatsächlich arbeiten Photovoltaikanlagen meist in Teillast). Werden Module senkrecht am Balkon montiert, sinkt der Jahresertrag um ca. 30 Prozent (d.h. 665 Volllaststunden). Ein so montiertes Steckersolargerät mit 800 Watt hat demnach einen Jahresertrag von 532 Kilowattstunden (kWh). Davon können ohne Speicher in Durchschnitt 45 Prozent zeitgleich im Haushalt verbraucht werden, d.h. 240 Kilowattstunden. Bei einem angenommenen Arbeitspreis von 37 ct/kWh ergeben sich Einsparungen von knapp 90 Euro pro Jahr. Bei Kosten von 400 Euro dauert es dementsprechend knapp fünf Jahre bis die Anschaffungskosten eingespart wurden. Steigt der Strompreis zwischenzeitlich an, kann sich die Amortisation beschleunigen. Ein Modul meist ausreichend: Balkonsolaranlagen sind vollständig auf den zeitgleichen Eigenverbrauch ausgerichtet. Stromüberschüsse werden unvergütet ins öffentliche Stromnetz eingespeist. Daher ist es – im Unterschied zu größeren Photovoltaikanlagen – besonders sinnvoll, die Anlagengröße an den eigenen Stromverbrauch anzupassen. Die Dauerlast in durchschnittlichen Haushalten liegt meist deutlich unter 100 Watt. Daher kann bereits ein einzelnes Modul mit z. B. 400 Watt Leistung die ökonomisch sinnvollste Variante sein. Die passende Größe können Sie mit dem Stecker-Solar-Simulator der HTW Berlin ermitteln. Neben den klassischen Glasmodulen mit Aluminiumrahmen können auch Steckersolargeräte mit flexiblen ETFE-Modulen genutzt werden, die geringere Anforderungen an die Montage stellen. Dieser Rechner zeigt Ihnen, wie viel Strom und Geld Sie mit einem Steckersolargerät am Balkon, an der Hauswand oder auf dem Dach einsparen. Batteriespeicher bei Steckersolargeräten unrentabel: Überschüssiger Solarstrom wird bei Steckersolargeräten ohne Vergütung ins Netz eingespeist. Es erscheint deshalb naheliegend, durch Batteriespeicher diesen überschüssigen Strom zu speichern und ebenfalls für den Eigenverbrauch nutzbar zu machen. Aber ein sehr großer Teil der Stromerzeugung aus Steckersolargeräten wird bereits zeitgleich direkt im Haushalt verbraucht. Die überschüssige Stromerzeugung dürfte daher – gerade in den Wintermonaten – kaum ausreichen, um den Speicher effektiv zu beladen. Im Verhältnis zu den hohen Anschaffungskosten wird er sich darum in der Regel nicht lohnen. Aus Umweltsicht sind Energiespeicher auf Netzebene zu bevorzugen und von Heimspeichern eher abzuraten, da Heimspeicher in der Regel auf Eigenverbrauch und nicht im Hinblick auf den gesamten Netzbedarf optimiert werden. Normgerechte Geräte kaufen: Achten Sie beim Kauf darauf, dass der enthaltene Wechselrichter die in Deutschland geltende Anschlussnorm VDE-AR-N 4105 erfüllt. Demnach dürfen nur Geräte mit einer Wechselrichterleistung von derzeit bis zu 600 Voltampere (Watt) durch elektrotechnische Laien in Betrieb genommen werden. Anschluss an das Hausnetz: Vielfach werden Steckersolargeräte mit einem klassischen Schutzkontaktstecker (Schuko-Stecker) angeboten. Dieser ist allerdings für die Stromeinspeisung bisher nicht zugelassen, da die Gefahr eines Stromschlags besteht, wenn der Stecker nicht eingesteckt ist, die Solaranlage aber Strom produziert. Die Anschlussnorm soll bis Sommer 2025 überarbeitet werden. Derzeit sieht sie als Stand der Technik eine spezielle Energiesteckdose oder einen Festanschluss vor. Wenden Sie sich für die Einbindung in das Hausnetz am besten an eine Elektrofachkraft. Achtung: Aus Brandschutzgründen darf ein Steckersolargerät auf keinen Fall über eine Mehrfachsteckdose an das Hausnetz angeschlossen werden! Transport sorgsam planen: Für Steckersolargeräte werden meist marktgängige Photovoltaikmodule mit Abmessungen von ca. 1,8 x 1,0 m genutzt. Wenn Sie ein Steckersolargerät vor Ort kaufen, achten Sie auf einen sicheren Transport. Wenn das Modul z B. aus Platzmangel quer aufgestellt im Kofferraum transportiert wird, können bereits beim Transport Mikrorisse entstehen, die die Leistungsfähigkeit beeinträchtigen und die Lebensdauer verkürzen. Darum erfolgt die Anlieferung meist mit einer Spedition. Angesichts hoher Speditionskosten und langer Fahrtwege bietet es sich an, gleich eine Sammelbestellung z. B. mit Ihren Nachbarn aufzugeben. Auf stabile Anbringung achten: Standard-Solarmodule wiegen jeweils etwa 20 Kilogramm und tragen zudem eine Windlast z. B. in das Balkongeländer ein (Eurocode 1: DIN EN 1991-1-4:2010-12: Teil 1 bis 4). Insbesondere bei schräg installierten Modulen müssen zusätzlich die Schneelasten (DIN EN 1991-1-3) berücksichtigt werden. Sowohl das Balkongeländer als auch die Unterkonstruktion und das Montagematerial müssen diesen Kräften sicher standhalten können. Beachten Sie deshalb unbedingt die Montagehinweise des Herstellers. Kabelbinder sind z. B. zur Anbringung definitiv nicht geeignet. Wenn Sie sich unsicher sind, lassen Sie die Montage am besten von Fachkräften durchführen. Beim Marktstammregister anmelden: Steckersolargeräte müssen Sie nicht beim Netzbetreiber, wohl aber innerhalb eines Monats nach Inbetriebnahme im Marktstammdatenregister der Bundesnetzagentur anmelden. Dabei werden nur wenige Daten abgefragt. Die Bundesnetzagentur bietet hierfür auch eine einseitige Anleitung als PDF . Balkon-Solaranlagen müssen innerhalb eines Monats nach Inbetriebnahme im Marktstammdatenregister der Bundesnetzagentur angemeldet werden. Defekte Module richtig entsorgen: Photovoltaikmodule halten im Regelfall 20 bis 30 Jahre. Für die Herstellung werden Ressourcen und Energie aufgewendet. Je länger ein Steckersolargerät genutzt wird, desto geringer sind folglich die Umweltwirkungen pro erzeugte Kilowattstunde. Nach ein bis zwei Jahren haben Photovoltaikanlagen so viel Energie erzeugt, wie für deren Herstellung und Entsorgung aufgewendet wird. Sie sind gesetzlich verpflichtet, Elektroaltgeräte getrennt vom übrigen Müll z. B. über den kommunalen Wertstoffhof zu entsorgen, sodass diese fachgerecht recycelt werden können. Dies gilt entsprechend auch für nicht mehr funktionstüchtige Steckersolargeräte. Weitere Informationen zur richtigen Entsorgung Ihres Steckersolargerätes und anderer Elektroaltgeräte finden Sie in unserem UBA-Umwelttipp Alte Elektrogeräte richtig entsorgen . Was Sie sonst noch tun können: Einige Bundesländer und Gemeinden bieten Zuschussförderungen für Steckersolargeräte an. Fragen Sie gegebenenfalls bei Ihrer Gemeinde nach. Für die Wirtschaftlichkeit ist in der Regel keine Förderung notwendig, da sich Steckersolargeräte durch den hohen Eigenverbrauch meist innerhalb weniger Jahre amortisieren. Hintergrund Weitere Informationen zu Steckersolaranlagen finden Sie auf unserer UBA -Themenseite Steckersolargeräte (Balkonkraftwerke) .
Origin | Count |
---|---|
Bund | 117 |
Land | 9 |
Type | Count |
---|---|
Förderprogramm | 110 |
Text | 11 |
Umweltprüfung | 5 |
License | Count |
---|---|
geschlossen | 8 |
offen | 118 |
Language | Count |
---|---|
Deutsch | 123 |
Englisch | 14 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 7 |
Keine | 51 |
Webseite | 69 |
Topic | Count |
---|---|
Boden | 126 |
Lebewesen & Lebensräume | 126 |
Luft | 126 |
Mensch & Umwelt | 126 |
Wasser | 126 |
Weitere | 118 |