s/windrichtung/Windsichtung/gi
Mit Hilfe dieser Daten wird die Luftzirkulation und somit die Durchlüftung der Stadteile sichtbar. Wo kann Wind als natürliche Kühlung bei Sommerhitze wirken? Für das menschliche Wohlbefinden in der Stadt spielen neben den thermischen Bedingungen auch die Windgeschwindigkeiten eine entscheidende Rolle (VDI, 2020). Diese haben einen direkten Einfluss auf die PET-Werte. Winde sorgen für eine Durchlüftung der Stadt und tragen somit zur Abkühlung bei. Ein entscheidender Faktor für die Windzirkulation in städtischen Gebieten ist die Bebauung, da Gebäude die freie Strömung der Luft behindern und die Winde ablenken. Während eine gezielte Lenkung von Windströmen die natürliche Belüftung und Kühlung fördern kann, können ungünstige Windverhältnisse die Nutzung öffentlicher Räume beeinträchtigen. Bei höheren Windgeschwindigkeiten dominiert eine vorwiegende Windrichtung aus Südwest (ca. 235°) in Krefeld. Aus diesem Grund wird in der Kartenanwendung die Anströmgeschwindigkeit mit 10 km/h und einer Hauptwindrichtung von 240° abgebildet. Die Auflösung beträgt 20 m.
Grundidee der Forschungsarbeit ist es, die nachvollziehbaren und kontrollierbaren Luftstroemungen in einem Tunnel zu nutzen, um aus der Abgasbeladung der Luft die Emissionen von Fahrzeugkollektiven zu bestimmen. Hauptvorteil dieser Vorgehensweise ist, dass diese Schadstoffbilanzierung weitgehend frei von aeusseren Einfluessen (z. B. Windstaerke, Windrichtung, Sonneneinstrahlung, Schadstoffemissionen anderer Quellgruppen) unter kontrollierbaren Randbedingungen durchgefuehrt werden kann. Die Bilanzierung erfolgt fuer die Komponenten Kohlenmonoxid, Stickstoffoxide, Kohlenwasserstoffe und Partikel (Russ). Der entscheidende Vorteil dieser Messungen besteht darin, dass das Emissionsverhalten unter Bedingungen, wie sie in der Praxis (hier: staedtische Hauptverkehrsstrassen) auftreten, bestimmt wird und die reale Fahrzeugflotte zu Grunde liegt. Der ausgewaehlte 2,3 km lange Tunnel der B 14 in Stuttgart-Heslach diente damit quasi als Grosslabor. Zur Bestimmung des aktuellen Fahrzeugkollektivs und des jeweiligen Verkehrsablaufs wurden ebenfalls umfangreiche Messungen und Erhebungen durchgefuehrt (z. B. Verkehrsstaerke, Verkehrszusammensetzung, Geschwindigkeit, Antriebsart, Hubraum, Leistung, Alter des Kfz). Die so ermittelten spezifischen Abgas-Emissionsfaktoren fuer Kraftfahrzeugstroeme koennen bei Wirkungsanalysen (z. B. Nutzen-Kosten-Untersuchungen von Strassenbauprojekten), bei Emissionskatastern, zur Kalibrierung von Ausbreitungsmodellen, zur Ableitung typischer Tagesganglinien einzelner Schadstoffe und auch zur Anpassung von Tunnellueftungen verwendet werden.
Der weit nach Süden vordringende Keil Südamerikas ist weltweit die einzige nennenswerte Landmasse zwischen ca. 45° und 60°Süd. Das senkrecht zur Hauptwindrichtung verlaufende Andengebirge stellt eine wirksame Barriere für die Westwinddrift dar und hat einen bestimmenden Einfluss auf die hemisphärische Zirkulation sowie das lokale Wettergeschehen. Das Gebirge zwingt die maritimen Luftmassen zum Aufsteigen, was häufig mit intensiven Steigungsregen auf der Luvseite der Anden einhergeht. Durch die Überströmung des Gebirges kommt es zur Ausbildung von speziellen Prozessgefügen in der atmosphärischen Strömung sowohl auf der Meso- als auch regionaler Skala. Der damit einhergehende Transport und Austausch von Energie und Masse beeinflusst maßgeblich die Entstehung und den Ausfall von Hydrometeoren. Trotz der starken Wechselwirkung zwischen Strömung, Topographie und Niederschlag wurde in Patagonien darüber bisher nur wenig geforscht. Das vorgeschlagene Forschungsvorhaben leistet daher einen Beitrag zum Verständnis der Wechselwirkung zwischen dynamischen Prozessen und der räumlichen und zeitlichen Variabilität von Niederschlag in dieser Region. Ziel des Projektes ist die Quantifizierung wichtiger Prozesse die neue Aufschlüsse über die relevanten Mechanismen liefern soll. Anhand von hochauflösenden numerischen Simulationen werden an Einzelfallstudien die dynamischen und thermodynamischen Eigenschaften der atmosphärischen Strömung im Detail analysiert. Begleitende Sensitivitätsstudien mit vereinfachten analytischen Modelle werden zudem Aussagen zu den Auswirkungen der atmosphärischen Variabilität auf die Niederschlagsverteilung liefern. Das aus der Studie gewonnene Prozessverständnis ist eine wichtige Grundlage für weiterführende Forschungsarbeiten im Bereich der Hydrologie, Glaziologie und Ökologie.
Das übergeordnete Ziel des geplanten Projektes besteht darin, vom Menschen verursachte Luftverschmutzung in Ballungsräumen besser zu verstehen. Die Untersuchung von Stickstoffdioxid (NO2) und Aerosolen wird sich dabei auf spektrale Messungen mit zwei MAX-DOAS (Multi-Axiale Differentielle Optische Absorptionsspektroskopie) Instrumenten an zwei verschiedenen Standorten in Wien stützen. Die MAX-DOAS Methode wird zur Messung von Streulicht in verschiedenen Blickrichtungen verwendet, aus denen die horizontale und vertikale Verteilung von Spurengasen und Aerosolen in der Troposphäre abgeleitet werden kann. Die Datenauswertung wird sich auf eine schnelle geometrische Annäherung sowie die exaktere Methode der Optimal Estimation stützen und troposphärische Säulen und Vertikalprofile von NO2 und Aerosolen ergeben. Die Vertikalprofile liefern eine wichtige Datengrundlage, die für den Vergleich mit bestehenden in-situ Messungen verwendet werden kann. Die aus den MAX-DOAS Messungen abgeleiteten troposphärischen Vertikalsäulen ermöglichen zusammen mit meteorologischen Messungen (z.B. Windgeschwindigkeit, Windrichtung) die Überwachung von Luftschadstoffen über städtischem Hintergrund, stark befahrenen Straßen, und industriellen Punktquellen auf horizontaler Ebene. Die geplanten Langzeitmessungen (über zwei Jahre) liefern einen wertvollen Datensatz für die Analyse der zeitlichen Variabilität von Luftschadstoffen (NO2 und Aerosole) über Wien. Ein Vergleich der in Wien erhobenen Daten mit vergleichbaren MAX-DOAS Messungen in Athen, Griechenland, oder Bremen, Deutschland, wird Ähnlichkeiten und Unterschiede zwischen den verschmutzten Standorten mit andersartigen meteorologischen und photochemischen Bedingungen aufzeigen. Die troposphärischen NO2-Säulen ermöglichen die Validierung von Satellitenmessungen der OMI, GOME-2, und TROPOMI Instrumente sowie den Vergleich mit Modellsimulationen (z.B. aus dem COPERNICUS Atmosphärenbeobachtungsdienst). Da sich bei den beiden Messgeräten Blickfelder einzelner azimutaler Richtungen teilweise überschneiden und die ergänzenden Messungen von in-situ Instrumenten eine Vielzahl an Information zur räumlichen Ausbreitung von NO2 bieten, soll versucht werden, ein räumlich aufgelöstes Bild der Luftverschmutzung über Wien mit Hilfe der tomographischen Darstellung zu entwickeln. Die Ergebnisse des Projektes werden wichtige Erkenntnisse zur horizontalen und vertikalen Ausbreitung von NO2 und Aerosolen liefern. Neben der Verbesserung der troposphärischen NO2 Auswertung werden die Ergebnisse wichtige Daten für Atmosphärenmodelle bereitstellen, da die Vertikalprofile von NO2 und Aerosolen eine nützliche Ergänzung zu den Punktmessungen von in-situ Messgeräten darstellen.
Die südwestliche Ostsee ist die Schlüsselregion für den Austausch von niedrigsalinem Oberflächenwasser und höhersalinem, sauerstoffreichem Bodenwasser zwischen der eigentlichen bzw. zentralen Ostsee und dem Skagerrak/Kattegat bzw. der Nordsee. Dieses System wird durch die Richtung und Intensität der Winde bestimmt und ist damit letztendlich durch das zyklonale Wettersystem des Nordatlantiks und die Golfstromaktivität kontrolliert. Die wesentliche Intention des beantragten Projektes ist die Untersuchung der Auswirkungen von holozänen Klimavariationen auf das Ökosystem Ostsee, welche sowohl durch die Sedimentabfolge als auch durch den Fossilinhalt reflektiert werden. Hierzu ist die Untersuchung der durch unterschiedliche Wind-/ Sturm- und Niederschlagsintensität hervorgerufenen Veränderungen der Salinität, der Nährstoffflüsse und des Sauerstoffgehalts der südwestlichen Ostsee vorgesehen. Diese können anhand organisch-wandiger und kieseliger Mikrofossilien, deren morphologischen Variationen, Arten-Sukzession und der chemischen Veränderungen bei der Einbettung nachgewiesen werden. Ziel dieses Projektes ist es, die Wechselwirkung zwischen Umwelt und Phyto-/Zooplankton im Ablauf der holozänen Entwicklungsgeschichte der südwestlichen Ostsee zu erfassen. Die zu erwartenden Ergebnisse sind Grundlagen zur Differenzierung natürlicher und anthropogener Umweltveränderungen sowie Datenbasis zur Modellierung zukünftiger Umweltveränderungen durch Klimaschwankungen.
Das Wattenmeer, das sich von Den Helder in den Niederlanden bis nach Skallingen in Dänemark erstreckt, ist ein Prototyp für eine durch den Meeresspiegelanstieg bedrohte Küstenregion. Über 50% des Wattenmeeres besteht aus Wattflächen, die nur während eines Teils des Gezeitenzyklus von Wasser bedeckt sind. Dadurch wird das einzigartige Küsten-Ökosystem des Wattenmeeres geformt, das aufgrund von Akkumulation von Sediment aus der Nordsee den Meeresspiegelanstieg der letzten Jahrhunderte überleben konnte. Angesichts der beobachteten Beschleunigung des Meeresspiegelanstieges stellt sich die Schlüsselfrage, bis zu welcher Rate des Meeresspiegelanstieges diese Sedimentakkumulation für das Überleben des ausreicht. Diese Frage ist hochkomplex, da die Sedimentflüsse in das Wattenmeer selbst von der Rate des Meeresspiegelanstieges sowie von anderen klimatischen Einflüssen und von der Sedimentverfügbarkeit in nicht-linearer Weise abhängen. Es ist bekannt, dass Netto-Sedimentflüsse durch von nicht-linearen Flachwassergezeiten und horizontalen Dichtegradienten (aufgrund von Niederschlag, Süßwasserabfluss und Oberflächen-Wärmeflüssen) bedingten Gezeitenasymmetrien angetrieben werden. Die Nichtlinearität der Gezeiten wiederum hängt vom Meeresspiegelanstieg selbst ab und die horizontalen Dichtegradienten variieren mit klimabedingten Änderungen von Verdunstung/Niederschlag und Abkühlung/Erwärmung. Weiterhin hängen Sedimentflüsse vom Windantrieb ab, der ebenfalls mit dem Klima variiert. Obwohl ein fundiertes Verständnis der zugrundeliegenden Sedimenttransportprozesse im Wattenmeer vorliegt, werden für Projektionen von morphologischen Veränderungen weiterhin einfache vertikal integrierte Modelle verwendet. Die Erkenntnisse, die aus solchen Modellen gewonnen werden, sind daher sehr eingeschränkt. Das wichtigste Ziel dieses Projektes ist daher, mögliche morphologische Reaktionen des Wattenmeeres auf einen beschleunigten Meeresspiegelanstieg und andere Aspekte des Klimawandels sowie Einflüsse von Sedimentverfügbarkeit mit Hilfe eines prozess-basierten Modells zu untersuchen. Dabei werden die wichtigsten Antriebe für Sedimenttransportprozesse in das Wattenmeer berücksichtigt. Zunächst sollen diese Modellsimulationen in systematischer Weise unter Nutzung verschiedener idealisierter Bathymetern durchgeführt werden, um die kritischsten Prozesse morphodynamischer Veränderungen zu erkennen. Mit Hilfe dieser Bathymeter können die Einflüsse des Meeresspiegelanstieges in Kombination mit anderen Einflussfaktoren (Niederschlag/Verdunstung, Abkühlung/Erwärmung, Wind-Wellenantrieb) untersucht werden. In einer zweiten Phase des SPP, unter der Annahme, dass die verfügbaren Computer Ressourcen weiter anwachsen, sollen solche Simulationen für realistische und komplexere Gezeitenbecken im Wattenmeer durchgeführt werden. In beiden Phasen des SPP soll die Dynamik von Salzwiesen explizit mit untersucht werden.
Die Ueberwachung der Luftqualitaet im Raum des Heizkraftwerkes Aubrugg erfolgt mit Hilfe eines festen Messnetzes. Die Messstationen in Wallisellen, Opfikon und Kreis 12 der Stadt Zuerich messen und registrieren kontinuierlich Schwefeldioxid, Windrichtung und Windgeschwindigkeit. Neu werden nun Stickstoffmonoxid, Stickstoffdioxid und Ozon bestimmt. Beginn der Messungen 1976. Die periodische Publikation der Messwerte erfolgt u.a. durch die Presse.
Ausserordentliche Wetterereignisse und 'Natur'katastrophen wollen in einen längeren Zeitraum eingeordnet werden. Dies ermöglicht die Datenbank Euro-Climhist, die seit den 1970er-Jahren von Prof. em. Dr. Christian Pfister und zahlreichen seiner Mitarbeitenden zusammengetragen wurde. Sie enthält in ihrer ersten Ausbaustufe (Schweiz ab 1500) rund 150 000 Daten auf verschiedenen zeitlichen Ebenen (Tag, Woche, Monat, Jahreszeit), die mit einer benutzerfreundlichen Software zugänglich gemacht werden. Dazu gehören: - Beschreibungen der täglichen Witterung: Himmelsbedeckung, Niederschlag, Lufttemperatur, Windrichtung und -stärke. - Sehr lange Messreihen der mittleren Monatstemperatur (u.a. Basel seit 1755, Genf seit 1768) und des Monatsniederschlags (u.a. Genf ab 1778, Zürich seit 1708 mit Lücken, Bern seit 1760), Tage mit Niederschlag (Zürich 1684-1738, 1864-2011 sowie Genf ab 1768). - Monatliche Witterungsberichte (1820-1999), mit kleinen Lücken. Diese dienen einer raschen Orientierung. - Beschreibungen von Witterungsschäden und Naturgefahren (Sturm, Hagel, Frost, Nässe, Dürre, Überschwemmungen, Erdrutsche, Feuer, Schnee etc.). - Beschreibungen des Blüte- und Reifezeitpunkts von (Kultur-)pflanzen: u.a. Zeitpunkt von Roggenernte und Weinlese (ab 1501), Kirschbaumblüte (ab 1721). - Beschreibungen der Schneebedeckung, Vereisung von Gewässern. - Aus manchen Beschreibungen wird deutlich, warum die Menschen Witterungsereignisse aufgezeichnet haben, von welchen Weltbildern sie geleitet wurden und wie sie auf Extreme reagierten.
Ziel des Projektes ist es, Proteine aus verschiedenen heimischen Leguminosen (Ackerbohne, gelbe Palerbse, braune Linse) durch trockentechnische Verfahren wie Passagenvermahlung und Windsichtung so anzureichern, dass sie bei der Herstellung von Back- und Teigwaren eingesetzt werden können. Dies trägt zur Nutzung bereits bekannter alternativer Proteinquellen sowie der daraus hergestellten Produkte bei und erhöht die Ressourceneffizienz. Durch diese schonenden Verfahren bleibt die Temperatur während der Fraktionierung niedrig, wodurch die Denaturierung der Proteine verhindert wird. Somit bleibt deren Funktionalität erhalten, die für einen Einsatz in z.B. Back- und Teigwaren notwendig ist. Ein weiterer Vorteil ist, dass eine Anreicherung pflanzlicher Proteine aus Leguminosen in herkömmliche Getreide-Mühlenprozesse integriert werden kann, was zur Vermeidung der aufwendigen und energieintensiven Verfahren zur Nassanreicherung von Proteinen führt. Gleichzeitig bleiben bioaktive Substanzen in den für die Lebensmittelherstellung verwendeten Fraktionen erhalten. Als wichtiger Aspekt soll in dem Projekt auch der Einfluss der Passagenvermahlung und Windsichtung auf die mikrobiologische Belastung der Fraktionen betrachtet sowie der Einfluss der proteinangereicherten Fraktionen im Vergleich zu den herkömmlichen Inhaltsstoffen auf die Veränderung im Vorkommen von Mikroorganismen der Lebensmittel untersucht werden.
| Origin | Count |
|---|---|
| Bund | 260 |
| Kommune | 3 |
| Land | 62 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 198 |
| unbekannt | 66 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 238 |
| unbekannt | 25 |
| Language | Count |
|---|---|
| Deutsch | 254 |
| Englisch | 25 |
| Resource type | Count |
|---|---|
| Datei | 29 |
| Dokument | 27 |
| Keine | 154 |
| Webdienst | 2 |
| Webseite | 80 |
| Topic | Count |
|---|---|
| Boden | 145 |
| Lebewesen und Lebensräume | 165 |
| Luft | 220 |
| Mensch und Umwelt | 263 |
| Wasser | 161 |
| Weitere | 264 |