Die POLO(poly-Si on Oxide)-Photovoltaik-Technologie wird möglicherweise einen höheren Wirkungsgrad bei der Umwandlung von Sonnenenergie in Strom im Vergleich zu herkömmlichen Zelltechnologien aufweisen. Für die Herstellung von Photovoltaikzellen und -modulen dieser Technologie werden im Projekt APOLON neue Produktionsverfahren entwickelt, deren ökologische und wirtschaftliche Auswirkungen bisher noch wenig beleuchtet wurden. Das Ziel dieses Teilvorhabens ist es, die POLO-Technologien unter wirtschaftlichen und ökologischen Gesichtspunkten mittels eines Life Cycle Assessments und einer Lebenszykluskostenanalyse zu bewerten. Die Bewertungsergebnisse für die POLO-Technologie werden der derzeit im Photovoltaikmarkt dominierenden PERC+-Technologie gegenübergestellt. Damit können beispielsweise die Produktionskosten von Zellen und Modulen dieser Technologie, die Stromgestehungskosten und die Umweltauswirkungen in Abhängigkeit von den Herstellungsprozessen quantifiziert und ermittelt werden. Darüber hinaus können die durchgeführten Analysen, zur Ermittlung der Verbesserungs- und Optimierungsmöglichkeiten der POLO-Technologie beitragen. Damit wird es eine klarere Perspektive der ökonomischen und ökologischen Auswirkungen geben, die diese Technologie haben können, und gleichzeitig der Weg für die lokale Produktion von POLO-basierte-Photovoltaikmodulen und für zukünftige Investitionen geebnet.
In der Industrie, z.B. bei der Muellvergasung oder bei GuD-Kraftwerken, entsteht unter anderem Fluorwasserstoff (HF). Da HF extrem umweltschaedlich und giftig ist, muss es aus dem Gas entfernt werden. Im Gegensatz zu den konventionellen Nassgasreinigungen kann das Gas trocken bei moeglichst hohen Temperaturen gereinigt werden. Energieverluste infolge des Abkuehlens und Wiederaufheizens koennen vermieden und so der Wirkungsgrad um einige Prozentpunkte erhoeht werden. Zudem entfaellt die Aufbereitung der anfallenden Abwaesser bei der Nassgasreinigung. Die Entwicklung derartiger Verfahren ist Gegenstand dieses Projektes.
Rund 140 Millionen Tonnen Kohlendioxid (CO2) pustet der Straßenverkehr in Deutschland jährlich in die Luft. Gleichzeitig ist es das Ziel der Bundesregierung, den CO2-Ausstoß in den kommenden zehn Jahren deutlich zu verringern. Der Ausbau der Elektromobilität soll Abhilfe schaffen. Doch häufig fehlt es noch an praktikablen Lösungen. Für kurze Fahrten in Städten sieht die Science to Business GmbH der Hochschule Osnabrück in Elektrorollern eine umweltschonende und alltagstaugliche Alternative. Mit einer Studie zum Mobilitätsverhalten und zu infrastrukturellen Anforderungen sollen Erkenntnisse für künftige Verkehrskonzepte gewonnen und der 'Nationalen Entwicklungsplan Elektromobilität' gestärkt werden. Osnabrück steht stellvertretend für Städte mit 100.000 bis 300.000 Einwohnern mit starkem Pendelverkehr. Elektroroller können hier zur akzeptanzfähigen Alternative zum Auto werden. Welche Herausforderungen sich dabei an Infrastruktur und Technik stellen, soll erforscht werden. Bevor eine Vielzahl an elektrisch betriebenen Fahrzeugen auf die Straße gehen kann, müssen zunächst die entsprechenden Stromtankstellen eingerichtet werden. Wie dieses Netzwerk für den Verbraucher am besten ausgestaltet wird, sollen die Ergebnisse der Studie deutlich machen: Von den Mobilitätsmustern lasse sich auf die optimale Infrastruktur schließen. Gleichzeitig sollen Daten zum Energieverbrauch sowie zur Ladedauer und Leistung der Elektroroller erfasst werden. Dazu wird ein Datenlogger entwickelt, mit dem eine Flotte von Elektrorollern ausgestattet werden soll. Mit diesen Datenloggern ließen sich die Fahrzeug- und Nutzungsprofile der innovativen Zweiräder erfassen. Unterschiedliche Unternehmen und Privatpersonen sollen dann mit den Modellrollern über Osnabrücks Straßen düsen. Mit einem Fahrtenbuch werden die Zahlen des Datenloggers ergänzt. Nach Auswertung des Materials wird aufzeigt, welche Probleme Industrie und Energieversorger noch bearbeiten müssen, bevor Elektrofahrzeuge zu einer echten wirtschaftlichen Alternative für den Endkunden werden.
In den Karten werden Solarthermieanlagen und PV-Anlagen dargestellt. Bei den Solarthermie-Anlagen handelt es sich ausschließlich um solche Anlagen, die bei den verschiedenen Förderinstitutionen bekannt sind. Einen eigenen, hier nicht erfassten Datenbestand bilden die sogenannten PV-Inselanlagen, also z. B. solarbetriebene Parkautomaten oder Beleuchtungsanlagen und ähnliche netzferne Systeme. In Berlin sind mit Stand 31.12.2024 41.723 PV-Anlagen registriert, wovon der Großteil Kleinanlagen unter 30 kWp sind (40.234) und nur 329 größere Anlagen (> 100 kWp) sind. Sie haben eine installierte Leistung von insgesamt etwa 380,64 MWp, wovon auf die genannten größeren Anlagen etwa 22 % (84,75 MWp) der Gesamtleistung in Berlin fallen. Mit Abstand die meisten Anlagen und die größte Gesamtleistung befinden sich in den drei Bezirken Marzahn-Hellersdorf, Treptow-Köpenick und Pankow. Hinsichtlich der installierten Leistung fällt auch der Bezirk Lichtenberg mit 35,4 MWp auf, hier wird die deutlich geringere absolute Anlagenzahl durch einzelne Anlagen mit hoher installierter Leistung ausgeglichen. Bei Betrachtung der feinräumigeren Ebene der Postleitzahlbereiche zeigt sich, dass die randstädtischen Einzelhaussiedlungen mit ihrer hohen absoluten Anlagenzahl die meisten PLZ-Bereiche mit Leistungen über 1.000 kWp aufweisen. Auf den Gebäuden der öffentlichen Hand waren zum Datenstand 31.03.2024 insgesamt 1.021 PV-Anlagen mit einer Leistung von 61,94 MWp installiert. Mit 190 Anlagen sind im Bezirk Lichtenberg die meisten PV-Anlagen auf öffentlichen Gebäuden zu finden, gefolgt von Marzahn-Hellersdorf (158) und Pankow (138). Die höchste installierte Leistung erzielt der Bezirk Lichtenberg mit 11,32 MWp, dicht gefolgt von Charlottenburg-Wilmersdorf (8,76 MWp) und Marzahn-Hellersdorf (8,39 MWp). Die öffentliche Hand unterhält auch Gebäude außerhalb Berlins, auf denen vier PV-Anlagen installiert sind, die eine Leistung von 1,14 MWp haben. Tab. 1: Anzahl der PV-Anlagen und die installierte Anlagenleistung in den Bezirken Berlins (Erfassungsstand Anlagenentwicklung PV-Anlagen 06.03.2025, Anlagen auf öffentlichen Gebäuden je Bezirk 31.03.2024, Stand der Stromeinspeisung 17.01.2024), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur Da die Anlagen oft mehr Strom produzieren als zur Eigenversorgung benötigt wird, wird der überschüssige Strom ins Stromnetz eingespeist. Dabei hat sich die eingespeiste Menge seit 2012 kontinuierlich von ca. 43 GWh in 2012 auf den Wert von 78,402 GWh in 2023 gesteigert (siehe Abb. 5). Die absolut höchsten Mengen an Strom speisen entsprechend dem aktuellen Datenstand die Bezirke Marzahn-Hellersdorf (13.836,8 MWh) und Treptow-Köpenick (10.278,8 MWh) ein (vgl. Tab. 3). Deutlich ist ein Schwerpunkt der Stromeinspeisung in den nördlichen und östlichen Bezirken zu erkennen. In Friedrichshain-Kreuzberg wird am wenigsten Strom in das Netz eingespeist, dort befinden sich aber auch die wenigsten Anlagen mit einer geringen Gesamtleistung. Auf der kleinteiligeren Ebene der Postleitzahlenbereiche heben sich, wie bereits bei der installierten Leistung der Anlagen, erwartungsgemäß wieder deutlich die durch Einzelhausbebauung geprägten Wohngebiete hervor. Abb. 5: Stromeinspeisung der Photovoltaikanlagen auf der Ebene der Bezirke Berlins (Erfassungsstand 01.07.2024), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Die relativen Deckungsraten der Photovoltaik schwanken in den Bezirken zwischen 2,4 % in Mitte und 12 % in Marzahn-Hellersdorf (vgl. Tab. 4). Die ermittelten relativen Deckungsraten zwischen Potenzial und Bestand für die Bezirke und Postleitzahlengebiete fallen auf den ersten Blick verhältnismäßig niedrig aus. Die Gründe dafür liegen jedoch in der Abweichung des theoretisch berechneten vom technisch realisierbaren Potenzial, die, um verlässliche Aussagen treffen zu können, im Einzelnen durch weitere Untersuchungen und Berechnungen konkretisiert werden müssten. Tab. 2: Relative Deckungsrate PV-Leistung in den Bezirken Berlins , Datenquelle: Solarcity Monitoringbericht, basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur, Stand 06.03.2024 Die aktuellsten Informationen über Photovoltaikanlagen in Berlin, wie beispielsweise ihre Standorte oder statistische Auswertungen zum Ausbau in den Bezirken, sind im Energieatlas Berlin in Form von Karten und Diagrammen abrufbar: https://energieatlas.berlin.de/ . Eine detaillierte Analyse des Solarausbaus in Berlin wird jährlich im Rahmen des Monitorings zum Masterplan Solarcity in einem gesonderten Bericht veröffentlicht: https://www.berlin.de/solarcity/solarcity-berlin/was-ist-der-masterplan-und-wo-stehen-wir/monitoring/ . Von den knapp 536.000 untersuchten Gebäuden eignen sich rund 421.000 Gebäude für die solare PV-Nutzung. Wenn die 45,7 km² theoretisch geeigneter Modulfläche für die Stromerzeugung mittels PV genutzt würden, könnten über PV-Anlagen mit 19,5 % Wirkungsgrad 7.929 GWh/a Strom erzeugt und 4,3 Mio. t CO2 eingespart werden. Tab. 3: Ergebnisse der Solarpotenzialanalyse für Photovoltaik auf Dachflächen in Berlin (Flachdächer werden mit einer aufgeständerten Installation gen Süden berücksichtigt) (IP SYSCON 2022) Da kein zentrales Register existiert, steht derzeit kein umfassender Datensatz zur Anzahl der solarthermischen Anlagen in Berlin zur Verfügung. Im Rahmen des Monitorings des Masterplans Solarcity werden daher unterschiedliche Methoden entwickelt, um die Datenbasis zu verbessern. Auf Grundlage dieser methodischen Ansätze wird die Zahl der Solarthermieanlagen im Jahr 2024 auf etwa 8.900 geschätzt, bei einer gesamten Kollektorfläche von rund 94.300 m². Sowohl die kleinräumige Darstellung der Einzelanlagen als auch die Aggregation auf die Raumbezüge Postleitzahl- und Bezirksebene verdeutlichen, dass die größte Anzahl der Anlagen im Außenbereich der Stadt installiert sind. Auf Bezirksebene ist zu sehen, dass Schwerpunkte in den Bezirken Steglitz-Zehlendorf (1.224), Treptow-Köpenick (1.155), Marzahn-Hellersdorf (1.133) und Reinickendorf (1.122 ) in vorliegen (vgl. Tab. 6), hierbei handelt es sich vergleichbar zu der Situation im PV-Anlagenbereich um kleinere Objekte auf Ein- und Zweifamilienhäusern in privater Nutzung. Im Innenstadtbereich, in den Bezirken Friedrichshain-Kreuzberg (76 Anlagen), Mitte (104 Anlagen) und Charlottenburg-Wilmersdorf (209 Anlagen) sind dagegen deutlich weniger Anlagen installiert, dafür jedoch auch solche mit großem elektrischen Leistungs- bzw. Wärmegewinnungspotenzial (Kollektorfläche im Mittel 15-37 m²). Diese befinden sich auf Gebäuden mit öffentlicher oder industriell-gewerblicher Nutzung. Tab. 4: Anzahl der Solarthermie-Anlagen in den Bezirken Berlins (Erfassungsstand 31.03.2024) sowie der Solarthermie-Anlagen der öffentlichen Hand (Erfassungsstand 20.02.2024) im Jahr 2023 Datenquelle: Energieatlas Berlin . Die aktuellsten Informationen über Solarthermieanlagen in Berlin, wie beispielsweise ihre Standorte oder statistische Auswertungen zum Ausbau in den Bezirken, sind im Energieatlas Berlin in Form von Karten und Diagrammen abrufbar: https://energieatlas.berlin.de/ . Eine detaillierte Analyse des Solarausbaus in Berlin wird jährlich im Rahmen des Monitorings zum Masterplan Solarcity in einem gesonderten Bericht veröffentlicht: https://www.berlin.de/solarcity/solarcity-berlin/was-ist-der-masterplan-und-wo-stehen-wir/monitoring/ . Ergebnisse der Potenzialstudie zur Solarthermie Von den knapp 536.000 untersuchten Gebäuden eignen sich mehr als 464.000 Gebäude für die solare Thermie-Nutzung mit einer Modulfläche von insgesamt 66,2 km². Tab. 5: Ergebnisse der Solarpotenzialanalyse für Solarthermie zur Warmwasserbereitung auf Dachflächen in Berlin (Flachdächer werden mit einer gen Süden aufgeständerten Installation berücksichtigt) (IP SYSCON 2022). Die berechneten Werte der globalen Einstrahlung als Jahressummenwerte streuen in Berlin – betrachtet über alle Oberflächen der Stadt – zwischen einem Maximum von etwa 1220 kWh/(m²/a) und einem Minimum um 246 kWh/(m²/a). Die vom Deutschen Wetterdienst DWD angesetzte mittlere Jahressumme für Berlin beträgt 1032 kWh/(m²/a). Sehr niedrige Werte werden auf Dachflächen nur dann ermittelt, wenn Überdeckungen durch Bäume oder Verschattungen aus anderen Gründen vorliegen (vgl. Abb. 6). Abb. 6: Einfluss von Überdeckungseffekten durch Bäume sowie durch die Dachausrichtung auf die berechneten solaren Einstrahlungswerte von Gebäudedächern (Werte als mittlere Jahressummen in kWh/(m²/a)). Oben: berechnete Einstrahlungswerte der Oberflächenraster in der Auflösung 0,5 * 0,5 m², schwarz: Gebäudeumringe. Unten: links: Luftbildausschnitt Februar 2021, rechts: Luftbildauschnitt August 2020. Bilder: Luftbilder: Geoportal Berlin, DOP20RGBI (unten links); TrueDOP20RGB – Sommerbefliegung (unten rechts) Die höchsten Werte erreichen dagegen unbeschattete bzw. nicht überdeckte und nach südlichen Himmelsrichtungen ausgerichtete geneigte Dachflächen. Offene und unbeschattete vegetationsbedeckte Flächen wie das Tempelhofer Feld erreichen ebenfalls hohe Werte um 1000 kWh/(m²/a). Waldgebiete und baumbestandene Areale dagegen vermindern durch ihre Struktur und Schattenwurf die Einstrahlungswerte beträchtlich bis in den Bereich der niedrigsten Einstrahlungen um 250-300 kWh/(m²/a). HHier ist eine direkte Beziehung zu stadtklimatischen Effekten zu sehen, wie sie zum Beispiel in den Analysekarten der Klimamodellierung gezeigt werden (vgl. Umweltatlaskarte Klimaanalysekarten: Oberflächentemperatur 2022 ). Insofern deckt die Karte „Solarpotenzial – Einstrahlung“ (08.09.3) ein breites Anwendungsspektrum ab.
Wasserstoff nimmt in der zukünftigen Energieversorgung einen wichtigen Stellenwert ein. Zur Verdichtung und Verflüssigung von Wasserstoff und anderen Energieträgern werden häufig Radialverdichter als Anlagenkomponente eingesetzt. Diese sind aufgrund ihrer hohen Stufendruckverhältnisse, ihrer Robustheit, ihrer niedrigen Investitionskosten sowie der guten Regelbarkeit besonders geeignet. Eine Erweiterung ihres stabilen Betriebsbereiches ist aufgrund der fluktuierenden Überschüsse der erneuerbaren Energien durch den zusätzlichen Einsatz eines Casing Treatments (CT) wünschenswert. Im Rahmen dieses Vorhabens wird ein CT für eine industrielle Radialverdichterstufe mit Vorleitrad (VIGV) ausgelegt und in den bestehenden Prüfstand integriert. Aufgrund der starken Wechselwirkung zwischen dem Laufrad und dem CT muss der Aspekt der Instationarität bereits in der Auslegung berücksichtigt werden, um ein effektives Design zu entwickeln. Aus diesem Grund wird die Auslegung bzw. Optimierung erstmalig mit Hilfe eines Frequenzbereichsverfahrens durchgeführt werden. Die Verwendung effizienter Simulationsverfahren ermöglicht es, komplexe instationäre Problemstellungen auch mit hoher Anzahl an freien Parametern mit vertretbaren Ressourcenaufwand zu lösen. Die experimentellen Messkampagnen untersuchen erstmalig, in welchem Maße bei verschiedenen Drehzahlen die Kennfeldbreite des Radialverdichters mithilfe der Kombination aus CT und VIGV erweitert wird. Es soll geklärt werden, inwiefern der Vordrall des VIGVs die Wirksamkeit des CTs beziehungsweise die Stabilität der Stufe beeinflusst. Von besonderem Interesse sind der Entstehungsort und der Mechanismus der Strömungsphänomene, die zur Stabilitätsminderung führen. Zuletzt wird der Einfluss des CTs auf den Wirkungsgrad des Radialverdichters untersucht. Die gleichzeitig durchgeführten instationären Strömungssimulationen vervollständigen das physikalische Verständnis der geplanten Messkampagne.
In der Energiesystemanalyse, -planung und -optimierung sind gute Modelle der Systeme wichtig, um die Auswirkungen von Investitionsentscheidungen und Betriebsstrategien möglichst genau vorhersagen zu können. Für Optimierungsmodelle kommunaler und industrieller Systeme, welche oft Sektorkopplungen und Ganzjahresbetrachtungen beinhalten, hat sich als Stand der Technik wegen guter Konvergenz und geringer Rechenzeit das Mixed Integer Linear Programming (MILP) etabliert. Dieses hat einen entscheidenden Nachteil: Durch die überwiegend linear zu formulierenden Modellgleichungen können temperatursensitive Systeme nicht hinreichend genau abgebildet werden. Temperaturabhängige Wirkungsgrade (z.B. von Wärmepumpen) oder Temperaturanforderungen in Systemen mit Erzeugern unterschiedlicher Vorlauftemperaturen (Pooling-Probleme) werden bislang nur auf Umwegen und unter großen Vereinfachungen berücksichtigt. Überwiegend können diese Probleme mit bilinearen Termen formuliert werden, welche in diesem Projektvorhaben mit dem Algorithmus des Mixed Integer Quadratic Constraint Programming (MIQCP) gelöst werden sollen. Um trotzdem geringe Rechenzeiten und das Lösen auch komplexer Energiesysteme zu ermöglichen, müssen mathematisch günstige Formulierungen für die Modellgleichungen gefunden werden. Hier setzt das Teilvorhaben der GFaI an: das Auffinden der vorteilhaftesten Formulierungen je Problemstellung und die Entwicklung von geeigneten Algorithmen, um diese Umformulierungen möglichst generisch zu vollziehen. Durch die Entwicklung dieser Algorithmen soll die Lösbarkeit bilinearer Problemstellungen für eine breite Anwendung nutzbar gemacht werden und die Verwendung von MIQCP in der Energiesystemoptimierung etabliert werden.
Solarmodule mit Tandemsolarzellen werden als die nächste Generation von Solarmodulen gesehen, mit denen deutlich höhere Wirkungsgrade als mit heutigen Solarmodulen erreicht werden können. Diese Technologie wird zudem für den Wiedereinstieg Deutschlands in die Herstellung von Solarmodulen entscheidend sein. Große Chancen werden dabei Modulen aus sogenannten monolithischen Perowskit-Silizium Tandem-Solarzellen zugeschrieben, da diese dem jetzigen Standardprodukt im Aufbau sehr ähnlich sind und das Zellkonzept auf der heutigen Silizium Zelltechnologie aufbaut. Voraussetzung für ihren Erfolg wird aber eine vergleichbare Lebensdauer sein. Im Teilvorhaben von Oxford PV geht es um das Herzstück solcher Module nämlich den Perowskit/Silizium Tandemzellen. Diese befinden sich noch in einem vorkommerziellen Stadium bzw. Technology Readiness Level im Gegensatz zu den sonstigen Technologien, die im Verbund erforscht werden. Somit trägt Oxford PV das größte Risiko der Partner. Auf Grund der noch sehr dynamischen Entwicklungen im Feld der Perowskit-Solarzellen sind Änderungen an mehreren Prozessschritten geplant, konkret bei der Metallisierung, welche mit der Verbindungstechnologie von den Modul-Partnern abgestimmt werden muss, bei den Kontaktschichten sowie bei der Absorberschicht.
Solarmodule mit Tandemsolarzellen werden als die nächste Generation von Solarmodulen gesehen, mit denen deutlich höhere Wirkungsgrade als mit heutigen Solarmodulen erreicht werden können. Diese Technologie wird zudem für den Wiedereinstieg Deutschlands in die Herstellung von Solarmodulen entscheidend sein. Große Chancen werden dabei Modulen aus sogenannten monolithischen Perowskit-Silizium Tandem-Solarzellen zugeschrieben, da diese dem jetzigen Standardprodukt im Aufbau sehr ähnlich sind und das Zellkonzept auf der heutigen Silizium Zelltechnologie aufbaut. Voraussetzung für ihren Erfolg wird aber eine vergleichbare Lebensdauer sein. Unser Vorhaben 'SuperSolid' zielt daher auf die Entwicklung großflächiger Solarmodule mit Tandemzellen basierend auf Perowskit- und Silizium Heterojunction-Solarzellen. Es sollen Materialien, Prozesse und Anlagen erforscht und entwickelt werden, mit denen ein Modulwirkungsgrad von 25% und eine Modullebensdauer von 30 Jahren demonstriert wird. Als Ergebnis soll bei der SOLARWATT GmbH ein Demonstrator entstehen, der in die Kommerzialisierung überführt werden kann. Um dieses Ziel zu erreichen, müssen Entwicklungsarbeiten an den Tandemzellen selbst wie auch an der Modulintegration, der Verschaltung und Verkapselung, durchgeführt werden. Die chemische, thermische und mechanische Wechselwirkung der Zellen mit dem Modulprozess sind für die Modulstabilität entscheidend. Der Projekt-Verbund besteht aus den führenden Firmen und Forschungsinstituten: die SOLARWATT GmbH, Hersteller von hochwertigen c-Si Solarmodulen und Oxford PV GmbH, Hersteller von Tandemzellen. Diese stellen die Hauptverwerter dar. Die beiden Forschungsinstitute HZB und FZ Jülich werden die Prozessentwicklung und Analytik an industrieartigen Tandem-Zellen und Modulen durchführen.
| Origin | Count |
|---|---|
| Bund | 4483 |
| Kommune | 2 |
| Land | 41 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Ereignis | 3 |
| Förderprogramm | 4337 |
| Text | 145 |
| unbekannt | 40 |
| License | Count |
|---|---|
| geschlossen | 107 |
| offen | 4334 |
| unbekannt | 84 |
| Language | Count |
|---|---|
| Deutsch | 4073 |
| Englisch | 872 |
| Resource type | Count |
|---|---|
| Archiv | 83 |
| Bild | 1 |
| Datei | 89 |
| Dokument | 141 |
| Keine | 2751 |
| Unbekannt | 1 |
| Webseite | 1651 |
| Topic | Count |
|---|---|
| Boden | 2749 |
| Lebewesen und Lebensräume | 2458 |
| Luft | 2533 |
| Mensch und Umwelt | 4508 |
| Wasser | 2157 |
| Weitere | 4525 |