Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.
Hochtemperaturbrennstoffzellen mit keramischem Festelektrolyt (SOFC: Solid Oxide Fuel Cell) sind aufgrund ihres hohen Wirkungsgrades und ihrer Umweltvertraeglichkeit eine zukunftsweisende Alternative gegenueber konventioneller Energieerzeugung. Die Leistungsfaehigkeit und Lebensdauer der Einzelzellen sind dabei entscheidende Kriterien fuer die wirtschaftliche Nutzung von Brennstoffzellen. Bisherige Untersuchungen haben ergeben, dass es bei Langzeitbetrieb zu irreversiblen Veraenderungen in der Mikrostruktur der Anode kommt, die zu einer Senkung der Leistungsfaehigkeit fuehren. Je nach Belastung der Einzelzellen treten unterschiedliche Degradationsmechanismen auf. Ziel dieses Projektes ist die Entwicklung einer Anode, die aus mehreren Funktionsschichten besteht, um so die noetige Leistungsfaehigkeit und Langzeitstabilitaet zu liefern. Es soll ein Gradient in der Korngroesse, dem Nickelanteil und somit der Porositaet und der elektrischen Leitfaehigkeit erreicht werden, da die einzelnen Bereiche der Anodenstruktur unterschiedlichen Anforderungen genuegen muessen. So sind an der Grenzschicht Elektrolyt/Anode kleine Koerner erwuenscht, um eine moeglichst grosse Reaktionsflaeche zu erhalten. Wohingegen an der Grenzflaeche Anode/Interkonnektor ein hoher Anteil an grossen Nickelkoernern erforderlich ist, um einen guten elektrischen Kontakt und hohe Porositaet zu gewaehrleisten. Die optimale Zusammensetzung und Mikrostruktur der einzelnen Funktionsschichten soll durch systematische Belastungstests (elektrisch, chemisch, thermomechanisch) an verschiedenen homogenen Modellstrukturen, das sind Cermetproben aus Nickel- und YSZ-Teilchen mit definierter, homogener Zusammensetzung und Mikrostruktur, und durch die elektrochemische Charakterisierung von Einzelzellen mit entsprechenden homogenen Anodenstrukturen ermittelt werden. Vor und nach Durchfuehrung der Belastungstests ist eine umfassende Analyse der Zusammensetzung und Mikrostruktur der Modell- und Anodenstrukturen mittels Elektronenmikroskopie (REM, TEM, EDX, WDX) vorgesehen. Anhand der gewonnenen Ergebnisse soll ein Modell fuer die verschiedenen Verlust- und Degradationsmechanismen in der Anode entwickelt werden.
Um die Energieausbeute zu erhöhen wurden in den vergangenen Jahren Windenergieanlagen mit zunehmend größerem Rotordurchmesser entwickelt. Eine weitere signifikante Vergrößerung der Rotoren erfordert die Entwicklung neuer Konzepte und Technologien, um einen überproportionalen Anstieg von Gewicht und Herstellungskosten zu vermeiden und die Energie-Erzeugungskosten zu senken. Das gemeinsame Ziel des Forschungsschwerpunktes besteht in der Entwicklung und Bewertung innovativer Konzepte zur Lastenkontrolle. Im beantragten Teilvorhaben soll eine hochgenaue CFD-basierte Berechnungskette weiterentwickelt und zur Berechnung der instationären Lasten einer Windenergieanlage mit bzw. ohne aktivierter Lastenkontrolle angewendet werden. Dabei soll eine realitätsnahe atmosphärische Zuströmung mit zeitlich aufgelöster Turbulenz betrachtet werden. Die Komplexität der betrachteten Konfiguration sowie der Zuströmung wird dabei sukzessive erhöht, um spezifische Einflüsse gezielt untersuchen zu können, Vergleiche mit Windkanalversuchen der Univ. Oldenburg und der TU Darmstadt zu ermöglichen und schließlich Daten zur Verbesserung vereinfachter Berechnungsverfahren der TU Berlin und der TU Darmstadt zu liefern. Da sich die Windkanalversuche nur im Modellmaßstab durchführen lassen wird das entwickelte numerische Verfahren zur Bewertung der Wirksamkeit des Lastenkontrollkonzepts für eine generische Anlage im Original-Maßstab unter atmosphärischen Bedingungen genutzt.
Die Gesundheit wird vor allem durch die hohen Emissionen an Feinstaub und gasförmigen Kohlenwasserstoffen der Holzfeuerungen beeinträchtigt. Beim Verbrennen von Holz entstehen klima- und gesundheitsschädliche Stoffe. So heizen Sie möglichst emissionsarm. Die Verbrennung von Holz, insbesondere von Scheitholz in kleinen Holzfeuerungsanlagen wie Kamin- oder Kachelöfen ohne automatische Regelung, läuft nie vollständig ab und es entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan, Lachgas und Ruß. Um möglichst emissionsarm und effizient zu heizen, sollte gut aufbereitetes und getrocknetes Holz aus nachhaltiger regionaler Forstwirtschaft in einer modernen Feuerstätte mit automatischer Regelung der Luftzufuhr, Katalysator und möglichst hohem Wirkungsgrad verbrannt werden. Gerade beim Verbrennen minderwertigen Holzes in alten, schlecht gewarteten Öfen und bei ungünstigen Verbrennungsbedingungen entstehen unnötig hohe Emissionen. Besonders in Ballungsräumen und in Tälern verschlechtern Holzheizungen aufgrund ihrer niedrigen Schornsteine die Luftqualität. Wie sorge ich dafür, dass mein Holzofen möglichst wenige Schadstoffe ausstößt? Bereits beim Kauf sollten Sie darauf achten, dass die Feuerstätte effizient und emissionsarm ist. Hinweise kann unser Ratgeber „Heizen mit Holz: Wenn, dann richtig!“ geben. Ältere Feuerstätten, die vor 2010 errichtet wurden, haben häufig höhere Emissionen und einen geringeren Wirkungsgrad und sollten daher ausgetauscht werden. Die verwendeten Brennstoffe müssen für das Gerät geeignet sein. Das heißt zum Beispiel, dass Kohleöfen nicht mit Holz oder Scheitholzöfen nicht mit zu großem, zu feuchtem oder zu viel Holz beheizt werden sollten. Die Bedienungsanleitung gibt Auskunft, welche Brennstoffe geeignet sind. Außerdem gibt sie Hinweise über die richtige Bedienung, um Anwendungsfehler, wie beispielsweise Überfüllen der Feuerungsanlage, zu spätes Nachlegen oder falsches Anzünden des Brennstoffes zu vermeiden. Die richtige Lagerung des Brennstoffes ist wichtig, damit das Holz unter optimaler Wärmeabgabe möglichst emissionsarm verbrennt. Frisch geschlagenes Holz enthält – je nach Jahreszeit und Holzart – zwischen 45 und 60 Prozent Wasser. Bei optimaler Trocknung sinkt dieser Wasseranteil auf 15 bis 20 Prozent. Damit das Brennholz richtig durchtrocknen kann, sollten es an einem sonnigen und luftigen Platz vor Regen und Schnee geschützt gestapelt werden und – je nach Holzart – ein bis zwei Jahre lang trocknen. Nicht zuletzt sollte der Ofen regelmäßig durch Fachleute gewartet und überwacht werden. So kann die Luftbelastung soweit wie möglich reduziert werden. Weitere Tipps für die Wahl des geeigneten Ofens und Brennmaterials, Anleitungen, wie Sie richtig heizen und Informationen zu den rechtlichen Rahmenbedingungen finden Sie in der UBA-Broschüre „Heizen mit Holz“ . Tipps zur Wärmewende in Gebäuden finden Sie in den Umwelttipps „Heizen & Bauen“ . Klimabilanz von Holzheizungen Beim Verbrennen von Holz entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan und Lachgas. Bei der Klimabilanz von Brennholz müssen zudem Emissionen berücksichtigt werden, die bei Holzernte, Transport und Bearbeitung entstehen. Darüber hinaus ist der Wald auch Kohlenstoffspeicher. So werden in deutschen Wäldern 1,26 Milliarden Tonnen Kohlenstoff in oberirdischer oder unterirdischer Biomasse gespeichert, die zuvor der Atmosphäre durch Photosynthese entzogen worden sind. Kommt es zu einer Verringerung des Wald- oder Baumbestandes, so kommt es auch zu einer damit einhergehenden Abnahme des Kohlenstoffspeichers sowie der Speicherleistung (neue Einbindung pro Jahr). Um den Kohlenstoff so lange wie möglich gebunden zu halten, soll Holz gemäß des Kaskadenprinzips vorrangig stofflich genutzt und erst am Ende seines Lebenszyklus der energetischen Nutzung zugeführt werden. Im Gegensatz dazu tragen u.a. Einzelraumfeuerungen, welche Scheitholz als Brennstoff verwenden, zu einer schnellen Freisetzung von Treibhausgasen an die Atmosphäre bei. Die vierte Bundeswaldinventur kam zu dem Ergebnis, dass in Deutschland zwischen 2017 und 2022 der Wald zu einer Kohlenstoffquelle wurde, d.h. es wurde mehr Kohlenstoff freigesetzt als gebunden. Um den Klimawandel und die dadurch bedingten Folgen durch Extremwetterereignisse möglichst gering zu halten, muss der Wald wieder zur Kohlenstoffsenke werden und die Senken-Leistung möglichst maximiert werden. Dazu muss weniger Kohlenstoff entnommen werden als gebunden wird. Das bedeutet, dass das klimafreundliche Rohstoff-Potenzial von Holz begrenzt ist. Darüber hinaus gibt es eine steigende Konkurrenz zwischen stofflicher und energetischer Nutzung von Holz. Bei der stofflichen Nutzung von Holz in Holzprodukten kann der Kohlenstoff lange Zeit gespeichert bleiben. Bei der energetischen Nutzung wird er stattdessen sofort in die Atmosphäre freigesetzt. Daher sollte eine energetische Nutzung am Ende einer stofflichen Nutzungskaskade erfolgen, in der der Kohlenstoff erst möglichst spät wieder in die Atmosphäre freigesetzt wird. Wer seine Heizung möglichst klimaschonend planen möchte, sollte verbrennungsfreie Technologien auswählen. Mehr zu diesem Thema finden Sie in den UBA-Umwelttipps zum Heizungstausch . Welche Luftschadstoffe können noch bei der Holzverbrennung entstehen? Bei der Verbrennung von Holz entstehen neben Treibhausgasen auch gesundheitsgefährdende Luftschadstoffe wie Feinstaub, organische Kohlenwasserstoffe wie Polyzyklisch Aromatische Kohlenwasserstoffe (PAKs), Stickoxide, Kohlenstoffmonoxid und Ruß. Feinstaub ist so klein, dass er mit dem bloßen Auge nicht sichtbar ist. Er kann beim Einatmen bis tief in die Lunge eindringen und dort Entzündungen und Stress in Zellen auslösen. Bronchitis, die Zunahme asthmatischer Anfälle oder Belastungen für das Herz-Kreislauf-System können die Folge sein. Feinstaub ist krebserregend und steht außerdem im Verdacht, Diabetes mellitus Typ 2 zu fördern. Feinstaub stellt insbesondere für Schwangere und Personen mit vorgeschädigten Atemwegen eine gesundheitliche Belastung dar. Ein neuer Kaminofen üblicher Größe (ca. 6 bis 8 kW) emittiert, wenn er bei Nennlast betrieben wird, in einer Stunde etwa 500 mg Staub. Das entspricht ca. 100 km Autofahren mit einem PKW der Abgasnorm Euro 6. Einige Kohlenwasserstoffverbindungen , wie z.B. PAKs, die bei einer Verbrennung als unverbrannte Nebenprodukte entstehen, sind geruchstragende Schadstoffe, die durch unsere Nase wahrgenommen werden können. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe.
Untersuchung von Einflussgroessen auf Bildung kondensierter und mitgerissener Tropfen in Hd- und Ueberstromdampfleitungen, Nd-Turbinen, internen und externen Wasserabscheidern, Nasskuehltuermen, Atmosphaere. Die Kenntnis der Zusammenhaenge erlaubt eine Verbesserung von Turbinenwirkungsgraden, Verringerung der Abwaerme sowie Verringerung der Kuehlturmemission und damit der Umweltbelastung durch Kuehlturmschwaden.
Im Rahmen des Projektes mit den Partnern Rheinmetall, McPhy und DLR wird ein AEL-Stapel mit hohem Wirkungsgrad und hoher Stromdichte entwickelt und optimiert, der aus fortschrittlichen, kostengünstigen, industriell skalierbaren Komponenten besteht und an einem 60-kW-Industrieprüfstand von McPhy seine Feldtauglichkeit über 6 Monate demonstriert. Die Weiterentwicklung der AEL wird sich auf zwei Schlüsselinnovationen stützen: - Integriertes Elektrodenpaket Ein hochaktiver Katalysator auf Basis eines kostengünstigen Nicht-Edelmetalls integriert mit einer mikroporösen Schicht und einer makroporösen Flüssigkeits-Gas-Diffusions-Schicht. Das vereinheitlichte Elektrodenpaket wird die Optimierung der katalytischen Aktivität mit dem optimierten Transport der Medien (flüssiger Elektrolyt & Gase) und der elektrischen Leitung kombinieren. Das Ziel im Vorhaben ist die Hochskalierung der Elektroden auf 400 cm2 für die Integration in eine praxisnahe Einzelzelle und über 1055 cm2 für die Integration in einen 60-kW-Industrieprüfstand-Stack im 6-Monats-Betrieb zur Feldtauglichkeitsvalidierung. - Feststoffmembran Dünne und dichte AEM-Membranen für den Betrieb bei hoher KOH-Konzentration werden anstelle von porösen Membranen wie z.B. Zirfon qualifiziert. Dadurch wird zum Einen der ohmsche Widerstand gesenkt und zum Anderen Reinheit und Differenzdruck erhöht. Durch die Kombination dieser innovativen Komponenten soll eine neue Generation von AEL mit sehr fortschrittlichen 3.87 kWh/Nm3 @ 0.5 A/cm2 und 4.30 kWh/Nm3 @ 1.2 A/cm2 erreicht werden. Darüber hinaus müssen stringente Degradationsziele erreicht werden und die Hochskalierung der Elektroden demonstriert werden. Die Kostenziele orientieren sich an den Zielen der EU-Kommission und der Nat. Wasserstoffstrategie. Die Arbeitspakete beinhalten Entwicklung der Komponenten, ihre Hochskalierung, Langzeitstabilität, Stack-Integration und Demonstration in einem 60 kW Prüfstand.
Wärmepumpen sind eine der zentralen Lösungen für die klimaneutrale Gebäudeheizung- und Klimatisierung der Zukunft. Im Jahr 2021 waren 1,2 Mio. Wärmepumpen in Deutschland im Betrieb. Die überwiegende Zahl dieser Wärmepumpen (70%) nutzen als Quelle die Luft. Steigt ihre Zahl weiter so stark an, wird eine Herausforderung immer zentraler: Die Geräuschentwicklung der Wärmepumpen auf ein Minimum bringen. Diese Herausforderung geht der Projektverbund für Luft/Wasser-Wärmepumpen mit Wärmepumpenherstellern, Komponentenlieferanten und Forschungsinstituten an. Der Projektverbund verbindet Methodenentwicklung zur akustischen Analyse und Bewertung von Wärmepumpen und deren Komponenten mit Lösungsentwicklungen in Technologieprojekten mit neuen Komponenten in Wärmepumpen, neuen Formen der Schalldämpfung und innovativen Gerätemodifikationen. Das Technologieprojekt 3 - Frequenzumrichter mit Aktiver Power Factor Correction (APFC) für Wärmepumpen mit Kältemittel R290 - Inverter4R290 befasst sich mit dem Einsatz von umweltfreundlichem Kältemittel R290 in Wärmepumpen. Dabei ist der Fokus auf der Leistungselektronik. Diese soll so gestaltet werden, dass sie für unterschiedliche Leistungsklassen von Wärmepumpen eingesetzt werden kann. Die Leistungselektronik besteht aus der APFC und einer Wechselrichterstufe. Die Leistungselektronik ist für den einphasigen und dreiphasigen Netzanschluss dimensioniert. Die APFC ist ausgelegt, um zukünftige Netzanforderungen bezüglich der Oberschwingungen im verbrauchten Strom über den kompletten Lastbereich und der Blindleistungsbereitstellung zu erfüllen. Die Wechselrichterstufe soll für einen hohen Wirkungsgrad und die Absenkung der Schallemissionen der Wärmepumpe optimiert werden. Je nach Taktfrequenz und ggf. aktiver Kühlung kann die gesamte Leistungselektronik auch zu Schallemissionen beitragen. Außerdem werden Bauraum und Kühlungsbedarf der Leistungselektronik für den Wärmepumpeneinsatz optimiert.
Origin | Count |
---|---|
Bund | 4454 |
Kommune | 1 |
Land | 48 |
Wissenschaft | 3 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 4309 |
Text | 142 |
unbekannt | 41 |
License | Count |
---|---|
geschlossen | 107 |
offen | 4304 |
unbekannt | 84 |
Language | Count |
---|---|
Deutsch | 4042 |
Englisch | 871 |
Resource type | Count |
---|---|
Archiv | 83 |
Datei | 89 |
Dokument | 124 |
Keine | 2739 |
Unbekannt | 1 |
Webseite | 1650 |
Topic | Count |
---|---|
Boden | 2762 |
Lebewesen & Lebensräume | 2599 |
Luft | 2540 |
Mensch & Umwelt | 4480 |
Wasser | 2167 |
Weitere | 4495 |