API src

Found 6102 results.

Related terms

Fachtagung: 'Nachhaltiger Tourismus - Schluessel zum Erfolg - Vorbildliche Schritte fuer einen oekologisch vertraeglichen und wirtschaftlich sinnvollen Tourismus in Europa'

Windkraftnutzung im Standortbereich Windecke (Voerde-Nord), Windgarten (Koenigsfeld) in Ennepetal: Gutachten. Energieversorgungskonzept Ennepetal

Im vorliegenden Gutachten soll untersucht werden, mit welcher mittleren jährlichen Windenergieausbeute an den repräsentativen windgünstigen Standorten in Windgarten und Windecke in Ennepetal zu rechnen ist. Diese .jährliche Ausbeute ist Grundlage zur Berechnung der Kosten für die produzierte elektrische Kwh verschiedener WKA unterschiedlicher Nabenhöhe. Die Ausarbeitung ist in folgende Abschnitt gegliedert: - der meteorologische Großraum Ennepetal in Bezug auf die Windkraftnutzung, - die Auswertung und graphische Darstellung der temporären Datenkollektive von den Standorten Windgarten (WG), Windecke (WE) und Feuerwache Doenberg (F-Doe), - Errechnung und graphische Darstellung der mittleren jährlichen Wind-GV und der Verteilung des spezifischen Windeneregieangebotes, - Standortvergleiche, - Ermittlung und graphische Darstellung der Leistungs- und Energieausbeute zweier WKA mit 17 m Durchmesser/80 kw (E-17) und 27 m Durchmesser/150 kw (W-27), - Betriebskostenrechnung/kwh für obige WKA.

Umweltpolitik als intertemporale Verteilungspolitik

Unter dem Eindruck des Leitbildwechsels in der Umweltpolitik (vgl 'Nachhaltiges Deutschland', UBA 97) ergeben sich aus oekonomischer Perspektive neue Fragestellungen bezueglich der Existenz und der Eigenschaften eines Trade-offs zwischen allokativer Effizienz und gerechter intertemporaler Verteilung in den umweltpolitischen Zielen. Untersucht werden sollen ua verschiedene weltanschauliche Grundhaltungen und normative Aussagen, die diesem Spannungsverhaeltnis zugrundeliegen.

FP4-NNE-THERMIE C, Matrixturbine (Schleusenturbine) im Donaukraftwerk Freudenau - Pilotversuch und Demonstration

Matrixturbine (Schleusenturbine) im Donaukraftwerk Freudenau: Bei Wasserkraftwerken an schiffbaren Fluessen entstehen durch Schleusungen erhebliche Energieverluste, welche sich fuer die bestehenden Donaukraftwerke mit rund 110 GWh/a abschaetzen lassen. Daher werden seit geraumer Zeit wirtschaftliche Moeglichkeiten gesucht, um die den Schleusungsvorgaengen innewohnende mechanische Energie zur Stromerzeugung zu nutzen. Im Falle des Kraftwerkes Freudenau ergibt sich nun die Chance, im Rahmen eines von der Europaeischen Union gefoerderten Projektes, ein neuartiges, gemeinsam von Verbund, der VoestAlpine MCE und Bouvier Hydro (Frankreich) entwickeltes Konzept in einem Pilotversuch zu erproben. Eine Matrixturbine besteht aus mehreren, gleich aufgebauten, kleinen Rohrturbinen und Generatoren, die mittels eines Rahmens zu einer Einheit zusammengefasst sind. Die Turbinen werden sowohl beim Fuellen, als auch beim Entleeren, dabei aber in umgekehrter Richtung, durchflossen. Den einzelnen Matrixeinheiten sind Absperrklappen in Form von Jalousien vorgeschaltet, welche den Wasserstrom freigeben und unterbinden koennen. Die Asynchrongeneratoren werden von den Propellerturbinen (starre Laufschaufeln) angetrieben. Das Laufrad ist so geformt, dass es in beiden Stroemungsrichtungen des Triebwassers akzeptable Wirkungsgrade erreicht. Zum Pilotversuch im Kraftwerk Freudenau wird die Matrixturbine in den Dammbalkenschlitz des Fuell- und Entleerkanals einer Schleusenkammer eingesetzt. Die Matrix besteht aus 5 x 5, also 25 Einzelmaschinensaetzen, mit je 1 m 2 Querschnittsflaeche. Die Generatoren sind schaltungsmaessig in drei Gruppen (maximale Gesamtdauerleistung 5000 kW) zusammengefasst. Nach Transformation der Generatorspannung auf die Spannungsebene der Hauptgeneratoren (10,5 kV) wird die elektrische Energie direkt auf der Unterspannungsseite der Blocktransformatoren eingespeist. Die gesamte Matrix kann bei Stoerungen rasch wieder ausgebaut werden. Die Anforderungen an eine Schleusenturbine sind dadurch gekennzeichnet, dass die Turbinen beidseitig anstroembar ausgefuehrt werden muessen und dass die Fallhoehe im Laufe der Schleusung kontinuierlich abnimmt. Unter der Annahme, dass pro Jahr 6500 Fuellvorgaenge bzw Entleerungsvorgaenge der mit der Matrixturbine ausgeruesteten Schleuse des Kraftwerkes Freudenau vorgenommen werden und dass ab Erreichen der maximalen durch die Turbinen verarbeitbaren Wassermenge diese Schleuse auch zur staendigen Wasserabfuhr herangezogen wird, kann jaehrlich elektrische Energie im Ausmass von rund 3,7 GWh erzeugt werden; das entspricht etwa dem Energiebedarf von 800 Haushalten. Bei diesem Pilotprojekt bietet sich die Moeglichkeit, das Konzept der Matrixturbine in seiner allgemeinsten Form, sowohl im Schleusungsbetrieb bei beiderseitiger Anstroemung, variabler Fallhoehe und Verwendung von Jalousieklappen, als auch im Dauerbetrieb (z. B.: bei Hochwasser) praktisch zu erproben. ... Hauptauftragnehmer: Österreichische Donaukraftwerke AG; Wien;

Opportunitaetskosten der Umweltverschmutzung in der Schweiz mit besonderer Beruecksichtigung der CO2-Emissionen

Als Opportunitaetskosten der Umweltverschmutzung werden diejenigen Kosten bezeichnet, welche eine Volkswirtschaft zur Vermeidung uebermaessiger Immissionen zu tragen hat. Diese (sozialen) Kosten setzen sich zusammen aus investitionsbedingten Zusatzkosten, die beim Einsatz schadstoffvermindernder Technologien entstehen und aus gesellschaftlichen Wohlfahrtsverlusten infolge Verminderung der wirtschaftlichen Aktivitaeten (Produktion und Konsum). Vor diesem Hintergrund lassen sich auf gesamtwirtschaftlicher Ebene kostenoptimale Steuer- und Subventionssaetze im Hinblick auf die Erfuellung vorgegebener (naturwissenschaftlich fundierter) Umweltstandards bestimmen. Diese basieren auf einer Optimierung der Technologie-Substitution in der Zeit und auf einer Beruecksichtigung der damit einhergehenden oekonomischen und oekologischen Konsequenzen. Eine besondere Anwendung bezieht sich auf das Problem der CO2-Emissionen, das sowohl im nationalen als auch im internationalen Rahmen zu behandeln ist.

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>&nbsp;</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

Optoelektronische Methode der Blickregistrierung zur objektiven Bewertung der Demontagegerechtheit von Bauteilen und Produkten

Zielsetzung und Anlass des Vorhabens: Das Aufkommen an Elektro(nik)-Altgeräten wird in der EU für die Jahre 1998/99 auf 8 Mio. Mg geschätzt, wobei 90 Prozent deponiert, verbrannt bzw. verwertet werden, ohne dass eine Schadstoffentfrachtung stattfindet. Bei der Verwertung dieser Geräte ergänzen sich heute die Bereiche der manuellen Demontage und die der verfahrenstechnischen Aufbereitung. Voraussetzung für ein ökologisch hochwertiges Recycling ist vielfach die Demontage, die jedoch erhebliche Kosten verursachen kann. Zum einen hat das Vorhaben die Zielsetzung, ein Screening über die bei den Verwertern anfallenden Alt-Produkte zu erzeugen, anhand dem eine Bewertung der Produkte aus ökologischer und ökonomischer Sicht durchgeführt werden kann und eine Entscheidung getroffen werden kann, ob eine Demontage nötig bzw. sinnvoll ist. Zum anderen werden Demontageuntersuchungen sowohl im Labor als auch verstärkt bei Verwertern mit Hilfe einer Blickregistrierungskamera durchgeführt. Aus den Analysen dieser Untersuchungen werden Konstruktionskriterien für eine schnellere Demontage abgeleitet. Darstellung der Arbeitsschritte und der angewandten Methoden: Im ersten Teil des Projektes wird mit Hilfe von Umweltverträglichkeitsuntersuchungen die Einteilung der beim Verwerter anfallenden Produkte vorgenommen. Ausgehend von einer Musterzerlegung werden die Einzelfraktionen der Geräte bestimmt, ihre Umweltrelevanz untersucht und die bestehenden Verwertungsalternativen zusammengestellt. Diese Ergebnisse werden unter Betrachtung aller wirtschaftlichen und ökologischen Teilaspekte möglicher Gesamtentsorgungsalternativen wie z.B. Shredder, Verbrennung bzw. Deponierung gegenübergestellt. Im zweiten Teil werden Demontageuntersuchungen mit Hilfe der Blickregistrierung durchgeführt, deren Analyse aufzeigt, welche Konstruktionskriterien eine einfache Erkennbarkeit der Baustruktur und der Verbindungselemente zulässt. Fazit: In diesem Projekt konnte durch eine Öko-Bilanzierung gezeigt werden, dass eine vertiefte Demontage ökologische Vorteile gegenüber der verfahrenstechnischen Aufbereitung beim Recycling von Elektronik-Geräten aufweist. Weiterhin wurde erstmals die Blickregistrierung bei der Demontage von Elektro(nik)-Geräten eingesetzt. Der Einsatz dieser Methode in diesem Bereich hat sich als effektiv erwiesen. Der Demontageanalyseprozess wurde soweit optimiert, dass er jetzt standardmäßig als Dienstleistung angeboten werden kann. Bei der Umsetzung der mit der Blickregistrierung ermittelten Konstruktionskriterien lassen sich bei gleichen Demontagekosten deutliche ökologische Vorteile erzielen. Für die Weiterführung des Projektes sind im nächsten Schritt entwicklungsbegleitende Untersuchungen notwendig, um die Ergebnisse zu bestätigen und umzusetzen.

Optimierung der biologischen Abfallbehandlung in Hessen

Mit der Studie sollen An-satzpunkte für ein optimiertes Stoffstrommanagement für getrennt gesammelte Bio- und Grünabfälle in Hessen aufgezeigt werden. Neben den ökologischen Belangen des Klimaschutzes und der Ressourcenschonung sollen konkrete Lösungsvorschläge für einzelne Gebietskörper-schaften in Hessen entwickelt werden. Die Bearbeitung der Studie erfolgt im 4. Quartal 2007 mit Mitteln für Vorhaben zur 'Energetischen und stofflichen Nutzung von Biorohstoffen'. Bioabfälle aus privaten Haushalten und öffentlichen Einrichtungen werden in Hessen seit 1990 getrennt gesammelt und kompostiert; durchschnittlich fallen etwa 700.000 t/a Abfälle an. Nach dem Konzept der flächendeckenden Bioabfallkompostierung in Hessen werden die eingesammelten Bioabfälle kompostiert. Entgegen dem ursprünglichen Konzept werden nicht alle Abfälle in Hessen kompostiert, sondern vielfach aus Kostengründen in benachbarten Bundesländern behandelt und verwertet. Da nicht alle Kompostierungsanlagen, die seit etwa 15 Jahren betrieben werden, dem heutigen Stand der Technik entsprechen, sind einzelne Anlagen entsprechend den Anforderungen der TA Luft umzubauen bzw. umzurüsten. Vor diesem Hintergrund wird geprüft, wie die biologische Abfallbehandlung in Hessen unter Berücksichtigung der in der Biomassepotenzialstudie aufgezeigten Entwicklungspfade im Hin-blick auf eine alternative Biomassenutzung optimiert werden kann. Modernes Management bio-gener Stoffströme optimiert stoffliche und energetische Verwertungswege mit dem Ziel eines idealen Zusammenwirkens von Nährstoff- und Kohlenstoff-Recycling, Energiebereitstellung (Strom und Wärme), CO2-Reduzierung durch Ersatz fossiler Energieträger sowie günstiger Behandlungskosten bei erweiterter regionaler Wertschöpfung. Durch die Förderungsmöglichkeiten des Erneuerbaren Energien Gesetzes (EEG) sowie stetig steigender Kosten für fossile Energieträger verbessert sich z.B. die Wirtschaftlichkeit der energetischen Verwertung (Biogaserzeugung oder Verbrennung) von getrennt gesammelten Bio- und Grünabfällen nachhaltig.

Begleitpflanzen im Zuckerrübenanbau: Pestizidminderung, Biodiversitätsförderung, Erosions- und Grundwasserschutz, Rentabilität

Zielsetzung und Anlass des Vorhabens: Zuckerrüben werden von Blattläusen befallen, die Saugschäden verursachen und Vergilbungsviren übertragen können. Bei frühem Befall können Ertragsverluste von bis zu 30 % auftreten. Um den Befall mit Blattläusen (und als Folge die Ertragsverluste) zu vermeiden, wird bei Überschreiten der Schadensschwelle in der Regel ganzflächig Insektizid eingesetzt. Systemisch wirkende neonikotinoide Saatgutbeizen sind seit 2019 nicht mehr zugelassen. Im Zuckerrübenanbau kommen daher dieselben insektiziden Wirkstoffe wie in anderen Ackerkulturen zur Anwendung. Zur Kontrolle von Blattläusen stehen in Zuckerrüben nur Wirkstoffe mit zwei verschiedenen Mechanismen zur Verfügung, was ein umsichtiges Resistenzmanagement nahezu unmöglich macht. Die ganzflächige Anwendung von Insektiziden schädigt auch viele Nicht-Zielorganismen. Vor diesem Hintergrund gibt es dringenden Bedarf für neue Lösungen zur Kontrolle von Schadinsekten im Zuckerrübenanbau. Eine Lösung könnten alternative Anbauverfahren mit Begleitpflanzen zwischen den Zuckerrübenreihen sein. Die Begleitpflanzen können zur Ablenkung der Schadinsekten von der Kulturpflanze führen oder die Zuckerrübenpflanzen maskieren. Außerdem könnten Gegenspieler der Schadinsekten gefördert und darüber hinaus die Biodiversität auf der Ackerfläche im Allgemeinen erhöht werden. Ein solches Anbauverfahren mit Begleitpflanzen soll helfen, die ganzflächige Anwendung von Insektiziden zu vermeiden oder deutlich zu vermindern. Zusätzliche Umweltziele bestehen darin, die Intensität der Herbizidanwendungen zu reduzieren, z.B. durch die Kombination nicht-chemischer und chemischer Verfahren der Beikrautkontrolle oder indem die Begleitpflanzen andere Pflanzen zwischen den Zuckerrübenreihen unterdrücken. Primäres Ziel des Vorhabens ist es, ein wirksames Verfahren der Blattlaus- und damit Viruskontrolle in Reihenkulturen wie der Sommerfrucht Zuckerrübe durch den gezielten Anbau von Begleitpflanzen praxisreif zu entwickeln. Im Unterschied zu Lösungsansätzen, die auf einer Förderung von Blattlausgegenspielern in der Landschaft oder auf Feldebene beruhen (Blühflächen), soll im vorliegenden Ansatz geprüft werden, ob sich Blattläuse und eventuell auch andere Schadorganismen von Zuckerrüben mit dem Anbau von Begleitpflanzen zwischen den Zuckerrübenreihen so kontrollieren lassen, dass Ertragseinbußen ohne Insektizidanwendungen vermieden werden. Zusätzlich muss das Anbauverfahren eine ausreichende Beikrautkontrolle bei geringer Konkurrenzwirkung der Begleitpflanze auf das Zuckerrübenwachstum gewährleisten.

Ertragssteigerung, Massenproduktion und Ausbringung von Saatgut als Start für den großflächigen Anbau von Torfmoos-Biomasse in Paludikultur

Torfmoos-Paludikultur bietet die einzigartige Möglichkeit, die CO2-Emissionen aus den Moorböden durch Wiedervernässung auf null zu reduzieren, die Verwendung von fossilem Torf zu beenden und gleichzeitig die Verfügbarkeit von hochwertigen Substratrohstoffen für den Erwerbsgartenbau sicherzustellen. Der erste Teil in der Produktionskette beim Torfmoos-Anbau ist die Herstellung von Saatgut. Im Vorgängerprojekt MOOSzucht wurde eine Methode zur axenischen Vermehrung von vegetativem Ausgangsmaterial in Bioreaktoren entwickelt - ein technologischer Durchbruch. Im geplanten Verbundprojekt MOOSstart soll der Herstellungsprozess etabliert werden, um im Anschluss kommerzialisiert werden zu können. Dafür ist die Entwicklung eines low-cost-Bioreaktors auf Basis der bisherigen Erfahrungen geplant. Zukünftig kann die Saatgutproduktion dezentral in den Regionen erfolgen, die für den Torfmoos-Anbau geeignet sind (v. a. Hochmoorbereichen NW-DE und Alpenvorland). Deshalb ist im Verbundvorhaben MOOSstart geplant, einen ersten low-cost-Bioreaktor in einem potentiellen Produktionsbetrieb in Niedersachsen aufzustellen und hier einen ersten Testlauf durchzuführen. Da sich die Struktur des im Bioreaktor produzierten Saatgutes maßgeblich von den bisher verwendeten, zerkleinerten Torfmoosen unterscheidet, ist eine Anpassung bzw. Neuentwicklung einer Ausbringtechnik notwendig. Für die Rentabilität des Torfmoos-Anbaus sind die Ernteerträge bedeutend. Deshalb ist im geplanten Vorhaben die Torfmoos-Produktivität ein weiterer Fokus, die mit bewährten und neuartigen Ansätzen erhöht bzw. validiert werden soll. Die angestrebten Projektergebnisse sollen zur Transformation hin zu einer klimaneutralen Moornutzung und Substratwirtschaft beitragen und so die Vorreiterrolle Deutschlands hinsichtlich Torfmoos-Anbau und der Produktion von Substraten stärken.

1 2 3 4 5609 610 611