API src

Found 2192 results.

Related terms

Untersuchungen der energetischen Nutzungsoptionen von Hanffaserreststoffen zur exemplarischen Einbindung in das Energiekonzept eines Verarbeitungsstandorts

Die Hanfindustrie hat sich in den vergangenen Jahren aufgrund neuer politischer Rahmenbedingungen und innovativer Produktfelder zu einem stark wachsenden Wirtschaftsbereich entwickelt. Hanfprodukte werden in der Lebensmittel-, Pharma-, Automobil-, Bau-, Textil- und Papierindustrie eingesetzt. Das stärkste Wachstum der Hanfindustrie findet in der Produktion von Lebensmittel- und Lebensmittelzusätzen aus Hanfsamen, Hanf- und CBD-Ölen statt. Als Nebenprodukte fallen in diesen Wirtschaftsbereichen Extraktionsreste an, für die es derzeit nur bedingt Verwertungsmöglichkeiten gibt. In der industriellen Hanffaserproduktion werden aus getrocknetem Hanfstroh hochwertige Naturfasern gewonnen, die z.B. im Fahrzeugleichtbau zur Herstellung von Fahrzeugarmaturen und Verkleidungen eingesetzt werden. Hanffasern sind darüber hinaus ein etabliertes ökologisches Dämmstoffmaterial. Hanfdämmstoffe zeichnen sich durch eine bessere CO2 Bilanz gegenüber konventionellen Dämmstoffmaterialien wie Mineralwolle oder Styropor aus und bieten die Möglichkeit CO2 über mehrere Jahrzehnte im Dämmstoff zu fixieren. Im Dämmstoffherstellungsverfahren fallen neben dem Hauptprodukt Hanffasern im etwa gleichen Umfang zellulosehaltige Reststoffe an, die derzeit nur zu einem geringen Teil wirtschaftlich genutzt werden. Im Hinblick auf eine zunehmende regenerative Energieversorgung sowie knapper werdende Ressourcen bzw. der kritischen Diskussion um den Einsatz nachwachsender Rohstoffe zur Energiegewinnung kommt der Erschließung biogener Rest- und Abfallstoffe für die Erzeugung effizienter, speicherbarer, flexibler und dezentraler Bioenergieträger zunehmende Bedeutung zu. Im Vorhaben HanfNRG sollen energetischen Nutzungsoptionen von Reststoffen der Hanfverarbeitung untersucht werden zur exemplarischen Einbindung in das Energiekonzept einer Hanffaserfabrik.

Ein verbessertes Verständnis der Phasenzusammensetzung von Mischphasenwolken in hohen Breiten durch den Einsatz einer neuartigen, flugzeuggetragenen Messmethode zur Unterscheidung von Eispartikeln und Flüssigtröpfchen

Die unzureichende Darstellung der Eis- und Flüssigphase in polaren Mischphasenwolken stellt eine der größten Unsicherheiten im Verständnis der beobachteten, starken klimatischen Veränderungen in hohen Breiten dar. Abweichungen in den modellierten und beobachteten Eispartikelkonzentrationen führen zu ungenauen Vorhersagen der makroskopischen Eigenschaften der Wolken und können falsche Berechnung der deponierten solaren Energie zur Folge haben. Um diese Situation zu verbessern und zu verlässlicheren Aussagen über die klimatische Entwicklung in hohen Breiten zu kommen, müssen verstärkt in-situ Messdaten insbesondere der Eisphase erhoben werden. Solche Messungen können aufgrund der geographischen Lage allerdings nur unter erheblichem Aufwand durchgeführt werden und scheitern meist daran, dass herkömmliche Messmethoden den Phasenzustand von kleinen (kleiner als 50 Mikrometer) Wolkenpartikeln nicht verlässlich bestimmen können.Die zuverlässige Bestimmung der Phasenzusammensetzung und insbesondere die Frage nach der Rolle kleiner Eispartikeln in polarer Mischphasenwolken, ist die Motivation des vorliegenden Projektantrags. Es sollen die Existenz und Konzentration kleiner Eispartikel in anstehenden Messkampagnen in der Arktis sowie im Südpolarmeer untersucht werden, wodurch gleichzeitig ein vertiefter Einblick in die mikrophysikalischen und optischen Eigenschaften kleiner Eispartikel gewonnen wird. Um dies zu erreichen, soll die neuartige Flugzeugmesssonde PHIPS (Particle Habit and Polar Scattering) zum Einsatz kommen, die stereomikroskopische Aufnahmen mit Streulichtmessungen an einzelnen Wolkenpartikeln kombiniert. Auf Basis dieser Messdaten soll ein neues Datenprodukt entwickelt werden, das zuverlässig Eispartikel von Flüssigtröpfchen unterscheidet.Die Hauptziele, die in diesem Projekt erreicht werden sollen, sind a) die selektive Detektion von Eispartikel mit Größen unterhalb 50 Mikrometer in polaren Mischphasenwolken, b) die mikrophysikalische Charakterisierung dieser Eispartikel hinsichtlich ihrer Form, Struktur und Oberflächenbeschaffenheit und c) die Quantifizierung der solaren Winkelstreufunktion von Eispartikeln in Mischphasenwolken. Die Analyse der Daten, welche in drei Feldmesskampagnen in der Arktis und im Südpolarmeer sowie in Wolkensimulations- experimenten gewonnen werden, wird einen wichtigen Beitrag zum Verständnis der klimatischen Veränderungen in den hohen Breiten und deren Modellierung liefern.

Entwicklung einer neuen Wachs-Substrat-Struktur zur Anwendung in Gewächshäusern und Indoor Farmen auf Basis versiegelter regionaler Naturfasern, Teilvorhaben 1: Erforschung der optimalen Wachs-Substrat-Struktur für Indoor Farms

Die saisonunabhängige Versorgung mit regionalem, frischem Gemüse ist in unseren Breitengraden nur durch Gewächshäuser oder moderne Indoor-/Vertical Farms möglich. Die Effizienz dieser Anbautechniken ist um ein Vielfaches höher als im konventionellen Feldanbau durch die Kultivierung in hydroponischen Systemen, bei denen die Pflanzen in einem erdfreien Substrat wurzeln und mit einer bedarfsgerechten Nährlösung gezielt versorgt werden. Obwohl durch die Hydroponik kaum noch Pestizide eingesetzt werden sind die verwendeten Substrate wie Steinwolle, Kokossubstrate oder Torf nicht nachhaltig. Ziel dieses Projekts ist die Entwicklung eines neuen, nachhaltigen Substrats basierend auf regional produzierten Naturfasern, welches die hohen Anforderungen der Hydroponik in Gewächshäusern und Indoor Farms erfüllt sowie rückstandslos kompostiert werden kann. Da die Naturfasern ähnlichen Reaktionen mit der Nährlösung wie Kokos- oder Torfsubstrate ausgesetzt wären, liegt die zentrale Innovation dieses Vorhabens in der Versiegelung der Naturfasern mit einem Biowachs auf CO2-Basis, welches die Fasern vor der Nährlösung schützt und den biologischen Abbauprozess verzögert, da sich das Biowachs erst unter Kompostierungsbedingungen abbaut. Im Vorhaben werden unterschiedliche Faser- und Wachszusammensetzungen systematisch unter kontrollierten Bedingungen sowie unter realen Kulturbedingungen untersucht, um die optimale Form sowie Strukturstabilität zur Anwendung sowohl im Gewächshaus als auch als Haltesystem für die Indoor Farm herauszufinden. Die neue Wachs-Substrat-Struktur soll vergleichbar gute Kultivierungsbedingungen zu Steinwolle erreichen und gleichzeitig dessen Nachteile eliminieren, womit große Mengen an Steinwolleabfällen und notwendiger Energie in Zukunft vermieden werden können.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, In-situ Messungen von eiskeimbildenden Partikeln (INP) und quantitative Bestimmung von biologischen INP

Die Bildung der Eis Phase in der Troposphäre stellt einen wichtigen Fokus der aktuellen Atmosphärenforschung dar. Durch heterogene Nukleation entstehen bei Temperaturen oberhalb von -37°C primäre Eiskristalle an sogenannten eiskeimbildenden Partikeln (INP, engl, ice nucleating particles). Die räumliche Verteilung der INP und deren Quellen variieren stark. In der Atmosphäre finden sich INP nur in sehr geringer Anzahlkonzentration, oft weniger als ein Partikel pro Liter, und sie stellen nur eine kleine Untergruppe des gesamten atmosphärischen Aerosols dar. Ziel dieses Antrages ist es die Anzahlkonzentrationen von eiskeimbildenden Partikeln und deren Variabilität in der Atmosphäre zu messen. Außerdem sind Laborstudien geplant, in denen unser Verständnis über die chemischen und biologischen Eigenschaften der Partikel, die die Eisbildung initiieren, verbessert werden soll. Mit dem von unserer Arbeitsgruppe entwickelten Eiskeimzahler FINCH (Fast Ice Nucleaus CHamber) sollen die atmosphärischen Anzahlkonzentrationen von INP bei verschiedenen Gefriertemperaturen und Übersättigungen an mehreren Standorten gemessen werden. Die Kopplung von FINCH mit einem virtuellen Gegenstromimpaktor (CVI, engl, counter-flow virtual impactor, Kooperation mit RP2), die während lNUIT-1 entwickelt und getestet wurde, soll nun weiter charakterisiert und Messungen damit fortgesetzt werden. Bei dieser Methode werden die Eispartikel, die in FINCH gebildet werden, von den unterkühlten Tröpfchen und inaktivierten Partikeln separiert und mit weiteren Messmethoden untersucht. In Kooperation mit RP2 und RP8 planen wir hierbei die Charakterisierung der INP mittels Größen- und Aerosolmassenspektrometer sowie die Sammlung der INP auf Filtern oder Impaktorplatten zur anschließenden Analyse mit einem Elektronenmikroskop (ESEM, engl. DFG fomi 54.011 -04/14 page 3 of 6 Environmental Scanning Electron Microscopy). Die Feldmessdaten werden von umfangreichen Laborstudien an den Forschungseinrichtungen AIDA (RP6) und LACIS (RP7) ergänzt. Dort soll das Immersionsgefrieren von verschiedenen Testpartikeln aus biologischem Material (z.B. Zellulose), porösem Material (z.B. Zeolith) und Mineralstaub mit geringem organischem Anteil im Detail untersucht werden. Des Weiteren planen wir Labormessungen, bei denen eine verbesserte Charakterisierung der Messunsicherheiten von FINCH erarbeitet werden soll. Außerdem werden regelmäßige Tests und Kalibrierungen mit FINCH durchgeführt, für die Standardroutinen festgelegt werden sollen. Um die Rolle der INP bei der Wolken- und Niederschlagsbildung sowie bei den Wolkeneigenschaften abzuschätzen, werden die gewonnenen Messergebnisse am Ende als Eingabeparameter für erweiterte Wolkenmodelle (Kooperation mit WP-M) dienen.

GTS Bulletin: FTGL32 BGGH - Forecast (details are described in the abstract)

The FTGL32 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FT): Aerodrome (VT >= 12 hours) A1A2 (GL): Greenland (Remarks from Volume-C: NilReason)

GTS Bulletin: FTSN32 ESSA - Forecast (details are described in the abstract)

The FTSN32 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FT): Aerodrome (VT >= 12 hours) A1A2 (SN): Sweden (Remarks from Volume-C: NilReason)

GTS Bulletin: FTKN32 HKMO - Forecast (details are described in the abstract)

The FTKN32 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FT): Aerodrome (VT >= 12 hours) A1A2 (KN): Kenya (Remarks from Volume-C: NilReason)

ACTRIS-D National Facilities, Phase 1, Teilprojekt 7 (UoC-NF): Implementierung der UoC (University of Cologne) National Facility JOYCE-NF (Jülich Observatory for Cloud Evolution) innerhalb der EU Forschungsinfrastruktur ACTRIS

GTS Bulletin: SNAA21 EDZW - Surface data (details are described in the abstract)

The SNAA21 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SN): Non-standard synoptic hour A1A2 (AA): Antarctic(The bulletin collects reports from stations: 89011;89047;)

Master tracks in different resolutions from POLAR 5 flight P5-256_COMPEX-EC_2025_2503260101 (test flight)

1 2 3 4 5218 219 220