API src

Found 27 results.

Transkriptionelle und metabolische Muster der Gerste für basale Krankheitsresistenz und -anfälligkeit gegenüber Mehltau (B08)

Das Projekt "Transkriptionelle und metabolische Muster der Gerste für basale Krankheitsresistenz und -anfälligkeit gegenüber Mehltau (B08)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan, Lehrstuhl für Phytopathologie.Wir möchten grundlegende Mechanismen der quantitativen Resistenz und Anfälligkeit gegen den Echten Gerstenmehltau aufklären. Wir werden die Daten aus unseren vorläufigen und geplanten Transkriptomanalysen nutzen, um die Funktion von Genen zu analysieren, die in Elternpflanzen und RACB-transgenen Pflanzen mit entweder erhöhter oder erniedrigter Anfälligkeit differenziell experimiert sind. Die Modifikation der Zellwand und der Zellzyklus stehen dabei bereits jetzt im Fokus unseres Interesses. Um ein tiefgehendes Verständnis der Transkriptionsmuster zu erlangen, nutzen wir Ansätze der reversen Genetik, Metabolismusstudien und Zellbiologie in unterschiedlichen Gerstengenotypen.

Cellular uptake and toxicological effects of differently sized zinc oxide nanoparticles in intestinal cells

Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12-1229 (micro)mol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of 614 (micro)mol/L and 1229 (micro)mol/L, which was associated with an increased rate of apoptotic and dead cells. ZnO NP < 100 nm altered the cell cycle of LT97 cells but not that of Caco-2 cells. ZnO NP < 50 nm led to the formation of micronuclei in LT97 cells. The Ames test revealed no mutagenicity for both ZnO NP. Our results indicate the potential toxicity of ZnO NP after oral exposure, which should be considered before application. © 2021 by the authors

Teilprojekt C^ISIBELA: Intrinsische Strahlenempfindlichkeit: Identifikation biologischer und epidemiologischer Langzeitfolgen^Teilprojekt A^Teilprojekt B, Teilprojekt D

Das Projekt "Teilprojekt C^ISIBELA: Intrinsische Strahlenempfindlichkeit: Identifikation biologischer und epidemiologischer Langzeitfolgen^Teilprojekt A^Teilprojekt B, Teilprojekt D" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Radiation Biology and DNA Repair, AG Löbrich.Das Gesamtziel des Vorhabens liegt in der Erforschung des Zusammenhangs zwischen einer genetischen Prädisposition und der Entstehung von Krebs im Kindesalter. Schwerpunkt von AP5 und AP6 ist es, zelluläre Untersuchungen mit molekularen Analysen zu komplementieren, um einen tieferen Einblick in die einer Tumorentstehung zugrunde liegenden molekulargenetischen Ursachen zu erlangen. Dabei wird untersucht, inwieweit sich Checkpoint- und Reparaturkapazität genetisch im Hinblick auf die Krebsentstehung vorbelasteter Personen von gesunden Personen unterscheidet. Genomische Analysen sollen Einblick in mögliche Ursachen der Krebsentstehung liefern. Die Arbeitsschritte (Rekrutierung der Probanden, Etablierung der Zelllinien, molekulare/zelluläre Untersuchungen) werden von verschiedenen Arbeitsgruppen durchgeführt, die eng verzahnt arbeiten. Schließlich sollen die Daten der verschiedenen Endpunkte korreliert und gemeinsam veröffentlicht werden. AP5: Im Rahmen des ISIMEP-Projekts wurden Zelllinien aus Biopsien von Patienten mit Zweittumor nach Ersttumor im Kindesalter und Zelllinien aus Biopsien von Patienten mit Ersttumor im Kindesalter ohne Zweittumor auf ihre Checkpoint- und Reparaturkapazität untersucht. Diese Untersuchungen werden nun an 20 neu etablierten, gematchten Kontrollzelllinien durchgeführt. Von allen 60 Zelllinien sollen molekulargenetsiche Analysen durchgeführt und evtl. vorliegende genomische Auffälligkeiten in Genen der DNA-Reparatur oder Zellzykluskontrolle mit dem zellulären Verhalten korreliert werden. Auffällige Zelllinien werden schließlich eingehenden Reparatur- und Zellzyklusstudien unterzogen. AP6: Die im Rahmen von AP2 rekrutierten ca. 300 Zelllinien aller drei Patientengruppen werden mit den bereits etablierten Screening-Verfahren auf ihr Zellzyklus- und Reparatur-Verhalten nach hohen und nach niedrigen Dosen untersucht. Die Daten werden statistisch ausgewertet und mit den epidemiologischen und genomischen Daten korreliert.

VERCHROMT: Erkennung, Verarbeitung und biologische Konsequenzen von Chromatinschäden nach Teilchenbestrahlung, Teilprojekt C

Das Projekt "VERCHROMT: Erkennung, Verarbeitung und biologische Konsequenzen von Chromatinschäden nach Teilchenbestrahlung, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Radiation Biology and DNA Repair, AG Löbrich.Der Schwerpunkt des Projektes liegt auf der Untersuchung der Chromatindynamik während der Homologen Rekombination in der G2-Phase und inwieweit der Chromatinstatus die Kontrolle des Zellzyklus beeinträchtigt. Es soll somit ein Beitrag zum besseren Verständnis der Entstehung von Chromosomenaberrationen und chromosomalen Instabilitäten geleistet werden. Ein weiterer Aspekt des Projekts soll auf der Untersuchung der HR-assoziierten Vorgänge in der Mitose liegen. Hierbei stellt sich die Frage, welche HR-Intermediate die Mitose durchlaufen und welches Schicksal diese Zellen im darauf folgenden Zellzyklus erfahren. Begonnen wird mit der Charakterisierung von Chromatinremodellierern während der HR mittels zellbiologischer, molekularbiologischer und biochemischer Methoden. Parallel dazu wird die Herstellung von Knock-out Zelllinien, sowie die Expression und Aufreinigung der zu untersuchenden Proteine durchgeführt. Im nächsten Schritt ist die Etablierung und Durchführung von in-vitro Studien zur Chromatin-remodellierenden Aktivität vorgesehen. Abschließend soll der Einfluss der Chromatinremodellierer und somit des Chromatinstatus auf die Sensitivität des G2/M Checkpoints untersucht werden. Diese Untersuchungen umfassen zudem die Analyse von strahleninduzierten Chromosomenaberrationen.

Teilprojekt A^COLLAR: Komplexe DNA-Läsionen und deren Bedeutung für die zelluläre Antwort nach Bestrahlung^Teilprojekt C, Teilprojekt B

Das Projekt "Teilprojekt A^COLLAR: Komplexe DNA-Läsionen und deren Bedeutung für die zelluläre Antwort nach Bestrahlung^Teilprojekt C, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universitätsklinikum Essen (AöR), Institut für Medizinische Strahlenbiologie.Das Gesamtziel des vorliegenden Vorhabens, das in drei Arbeitspaketen (WP) aufgegliedert ist, ist es, den Beitrag der Komplexität eines durch ionisierende Strahlung induzierten DNA Doppelstrangbruches (DSBs) auf die Auswahl des Reparaturweges, die Erzeugung von Verarbeitungsfehlern, wie auch auf die Aktivierung von Checkpoints im Zellzyklus zu untersuchen. Speziell, wird die Hypothese geprüft, dass DSB-Cluster eine höchst gefährliche Form der DNA-Schädigung darstellen, mit einem besonders hohen Risiko für misrepair, die schließlich zum Zelltod oder genomische Instabilität führt. Weitere Stufen der DSB-Komplexität werden durch kombinierte Behandlung mit ionisierender Strahlung und Cisplatin erreicht. Cisplatin ist eines der erfolgreichsten Chemotherapeutika in der Krebstherapie, das oft mit Bestrahlung kombiniert wird. Cisplatinresistenz stellt ein zentrales Problem in der klinischen Anwendung dar und wird von Faktoren beeinflusst, die hier untersucht werden. WP3: Prof. Iliakis 1. Konstrukt Aufbau zur Untersuchung der Auswirkungen der DSB-Cluster-Komplexität in Bezug auf DSB-Zahl und Entfernung, wie auch auf die Wahrscheinlichkeit für misrepair. 2. Chromosomenaberration und Zellüberleben werden untersucht, und Genomveränderungen durch Next Generation Sequencing (NGS) analysiert. WP4: Prof. Iliakis 1. Zelllinien mit regulierbaren I-SceI Expression werden erzeugt um Zellüberleben und Chromosomenaberrationen zu messen. 2. NGS wird eingesetzt um fehlerhafte Verarbeitung von DSB und DSB-Cluster genauer zu analysieren, und Genexpressionsmuster untersucht. WP5: Prof. Stuschke 1. Wechselwirkungen von Cisplatin und IR in der G1-, S- und G2-Phase des Zellzyklus, wie auch der Einsatz von NHEJ und HRR werden untersucht. Letzteres auch durch den Einsatz I-SceI-induzierten DSB in speziell integrierten Konstrukten 2. Die Wirkung von Cisplatin und IR auf DSB-Resektion, Checkpoint Aktivierung und Chromatinstruktur werden nach einzeln und fraktionierter Bestrahlung untersucht.

COLLAR: Komplexe DNA-Läsionen und deren Bedeutung für die zelluläre Antwort nach Bestrahlung, COLLAR: Complex DNA lesions and their impact on cellular radiation response (Collar); Sub project A

Das Projekt "COLLAR: Komplexe DNA-Läsionen und deren Bedeutung für die zelluläre Antwort nach Bestrahlung, COLLAR: Complex DNA lesions and their impact on cellular radiation response (Collar); Sub project A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Geschäftsbereich Sicherheit und Strahlenschutz (S).The investigations will deepen our knowledge on the impact of radiation-induced complex DNA lesions with spinoffs for radiation protection and the development of new, advanced tumor therapy strategies. The DNA double-strand-break (DSB), which is defined as a rupture in the double-stranded DNA molecule, is the most critical DNA lesion and when un- or misrepaired may lead to transformation or cell killing. For a DSB the chance to be accurately repaired strongly depends on its complexity. This complexity is defined by the nature and number of chemical alterations involved, its clustering or location in chromatin regions of different accessibility, as well as its association with DNA replication. It is widely recognized that lesion complexity is a major determinant of many of the adverse effects of IR, but the risks associated with different levels of complexity and the role of complexity in the choice of DSB repair pathway remain conjectural. The latter is particularly relevant, as it is well-known that the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors. Therefore, pathway-choice will define the types and levels of possible errors and thus also the associated risk for genomic alterations. Here, we present a project designed to address the biological consequences of DSBs of different levels of complexity focusing on how complexity affects processing and the generation of processing-errors. In a highly coordinated effort, five expert Institutes and Clinics address specific facets of DSB complexity and cover in this way a spectrum of lesions encompassing all major candidates for adverse radiation effects. Importantly, the experimental design integrates a bioinformatics component analyzing the effect of DSB complexity on gene expression, as well as DNA sequence alterations from erroneous processing. The knowledge generated by the proposal will be important for our understanding of the mechanisms underpinning individual radiosensitivity differences, and relevant to radiation protection and individualized radiotherapy. The proposed research will generate an environment that will strengthen the participating groups and as a result the field of Radiation Biology in Germany. Most notably though, it will generate a unique environment for recruiting and training young investigators, as well for retaining in the field excellent graduate students as postdoctoral fellows.

Teilprojekt B^e:ToP - Verbundprojekt: Immunotox - Etablierung eines integrativen Ansatzes zur prädiktiven Immunotoxizität unter Verwendung von zellbasierten und OMICS Technologien, Teilprojekt A

Das Projekt "Teilprojekt B^e:ToP - Verbundprojekt: Immunotox - Etablierung eines integrativen Ansatzes zur prädiktiven Immunotoxizität unter Verwendung von zellbasierten und OMICS Technologien, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Greifswald, Institut für Pharmazie, Lehrstuhl für Pharmazeutische Biologie.Ziel des Gesamtprojektes ist es, das immuntoxische Potential von Substanzen zu identifizieren und durch Charakterisierung biologischer Marker und Pathways mittels einer Kombination verschiedener in-vitro Methoden aus der Zellbiologie, Proteomics und Metabolomics sowie bioinformatischer Analysen vorherzusagen. Im Teilprojekt EMAU werden die Substanzen an humanen Zelllinien des Immunsystems zunächst einem Screening hinsichtlich ihrer Toxizität unterzogen, um dann spezifischere Methoden zur weiteren Charakterisierung zu nutzen (Zytokinfreisetzung, Monozytenaktivierung, Zellzyklus, intrazelluläre Sauerstoffradikale). Proteom- und Metabolomuntersuchungen sollen im nächsten Schritt die Ergebnisse der zellbiologischen Untersuchungen bestätigen. Im Einzelnen werden ausgewählte Proteine, die in Stressreaktionen und Apoptose involviert sind sowie Rezeptoren des Immunsystems (z.B. COX-2, HSP, Caspase-3, Bcl-2 Familie, NFkappaB, CTLA-4/CD152, FcR) unter Verwendung der 2D-Gelelektrophorese mit Identifizierung der unterschiedlich exprimierten Proteine detaillierter untersucht. Metabolomuntersuchungen dienen der Klärung, ob die Substanzen den metabolischen Zustand der Immunzellen beeinflussen. Nach Anpassung der Methodik für eukaryotische Zellen, werden sowohl der intra- als auch der extrazelluläre Metaboliten-Pool gemessen. Der Projektpartner in Berlin wird die Daten begleitend bioinformatisch bearbeiten/modellieren, um zu einer Datenbank und Vorhersage der Immuntoxizität zu kommen.

e:ToP - Verbundprojekt: Immunotox - Etablierung eines integrativen Ansatzes zur prädiktiven Immunotoxizität unter Verwendung von zellbasierten und OMICS Technologien, Teilprojekt B

Das Projekt "e:ToP - Verbundprojekt: Immunotox - Etablierung eines integrativen Ansatzes zur prädiktiven Immunotoxizität unter Verwendung von zellbasierten und OMICS Technologien, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Institut für Physiologie.Ziel des Gesamtantrages ist es, das immuntoxische Potential von Substanzen zu identifizieren und durch Charakterisierung biologischer Marker und Pathways mittels einer Kombination verschiedener in-vitro Methoden aus der Zellbiologie, Proteomics und Metabolomics sowie bioinformatischer Analysen vorherzusagen. Im Teilprojekt EMAU werden die Substanzen an humanen Zelllinien des Immunsystems zunächst einem Screening hinsichtlich ihrer Toxizität unterzogen, um dann spezifischere Methoden zur weiteren Charakterisierung zu nutzen (Zytokinfreisetzung, Monozytenaktivierung, Zellzyklus, intrazelluläre Sauerstoffradikale). Proteom- und Metabolomuntersuchungen sollen im nächsten Schritt die Ergebnisse der zellbiologischen Untersuchungen bestätigen. Im Einzelnen werden ausgewählte Proteine, die in Stress Reaktionen und Apoptose involviert sind sowie Rezeptoren des Immunsystems (z.B. COX-2, HIF, HSP, Caspase-3, Bcl-2 Familie, NFkappaB, CTLA-4/CD152, Fc Rezeptor) unter Verwendung der 2D-Gelelektrophorese mit Identifizierung der unterschiedlich exprimierten Spots detaillierter untersucht. Metabolomuntersuchungen diene der Klärung, ob die Substanzen den metabolischen Zustand der Immunzellen beeinflussen. Nach Anpassung der Methodik für eukaryotische Zellen, werden sowohl der intra- als auch extrazelluläre Metaboliten-Pool gemessen. Der Projektpartner in Berlin wird die Daten begleitend bioinformatisch bearbeiten/modellieren, um zu einer Database und Vorhersage der Immuntoxizität zu kommen.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Kontrolle des Blühzeitpunktes durch Trehalose-6-Phosphat

Das Projekt "Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Kontrolle des Blühzeitpunktes durch Trehalose-6-Phosphat" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für molekulare Pflanzenphysiologie.Im Lebenszyklus einer Pflanze ist die Blühinduktion von zentraler Bedeutung. Gerade wegen seiner Wichtigkeit steht das Blühen unter der Kontrolle eines komplexen genetischen Netzwerkes, das endogene Signale (Hormone, Kohlenhydrate, Alter) und Umweltsignale (Temperatur, Tageslänge) miteinschließt. Unter induktiven Tageslängen wird das Schlüsselgen der Blühinduktion FLOWERING LOCUS T (FT) in der Vaskulatur der Blättern induziert und löst als Langstreckensignal im Apikalmeristem die Blütenbildung aus. Vom Dissacharid Trehalose-6-Phosphat konnte gezeigt werden, dass es in der Koordination von Kohlenhydratstatus und Entwicklungsprozessen als Signalmolekül fungiert. Arabidopsis thaliana Pflanzen, denen das TREHALOSE 6-PHOSPHAT SYNTHASE1 (TPS1) Gen fehlt, blühen außerordentlich spät. Kürzlich konnten wir zeigen, dass der TPS1/T6P-Signalweg die Expression verschiedener Blühzeitpunkt-regulierender Gene kontrolliert. In der Vaskulatur des Blattes ist das T6P/TPS1 Signal zur Induktion von FT unabdingbar, wohingegen im Sproßapikalmeristem MIR156 und dessen Zieltranskripte der SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL)-Gene das Ziel des T6P/TPS1 Signals darstellen. Gemeinsam stellen die umweltabhängigen (photoperiodischen) und physiologischen (T6P/TPS1) Signale sicher, dass das Blühen nur unter optimalen Bedingungen eingeleitet wird, das heißt wenn die Tageslänge eine Mindestlänge überschreitet und der Kohlenhydrathaushalt die energieaufwändige Blühinduktion und die Produktion von Samen gewährleisten kann. Dennoch bleiben viele Fragen die Funktion des T6P/TPS1 Signals betreffend offen. In diesem Antrag schlagen wir eine Serie von Experimenten vor, mit dem Ziel das T6P/TPS1 Signal besser in die Signalwege der Blühzeitpunktregulation einzubinden. Aus unseren Vorarbeiten ergibt sich, dass der T6P/TPS1-Signalweg das Blühen teilweise durch die Zellzyklus-abhängige Modulation der Stammzellanzahl im Meristem reguliert - ein zuvor unerforschter Aspekt, den wir weiter untersuchen werden. Außerdem konnte wir zeigen, dass T6P/TPS1 die Fähigkeit von Pflanzen auf Änderungen der Umgebungstemperatur zu reagieren, ebenso beeinflusst wie die Reaktion auf längere Kälteperioden (Vernalisation). Darauf aufbauend werden wir die Interaktion des T6P/TPS1-Signalweges mit der Temperatur-abhängigen Regulation des Blühens untersuchen. Abgesehen von den oben erwähnten Experimenten, die sich auf bekannte Gene und Signalwege fokussieren, werden neue Komponenten des T6P/TPS1-Signalweges identifiziert werden. Zu diesem Zweck haben wir bereits eine umfassende genetische Sichtung durchgeführt, um Suppressoren des späten Blühens der tps1-Mutante zu identifizieren. Als Teil des Schwerpunktprogramms werden wir die zugrundeliegenden Gene identifizieren, diese umfassend charakterisieren und in den T6P/TPS1-Signalweg integrieren. Zusammenfassend werden die geplanten Experimente wertvolle Hinweise zur Integration des Kohlenhydrathaushalts der Pflanzen in die Signalwege der Blühinduktion liefern.

Entwicklung strahleninduzierter DNA-Schäden während der S-Phase des Zellzyklus

Das Projekt "Entwicklung strahleninduzierter DNA-Schäden während der S-Phase des Zellzyklus" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,Bundesamt für Strahlenschutz. Es wird/wurde ausgeführt durch: Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie.Ziel dieses Verbundprojektes ist die Aufklärung der Signalkaskaden, die nach ionisierender Bestrahlung (IR)von S-Phase Zellen die DNA (Desoxyribonukleinsäure)-Replikation- und Reparaturvorgänge koordinierenund den Erhalt der genomischen Stabilität gewährleisten. Das Vorhaben beinhaltet folgende Einzelzielsetzungen:- Aufklärung der durch die Phosphoinositid-3-Kinasen (PIKK) ATM (Ataxia telangiectasia mutated)/ATR(ATM und Rad3-related Protein)-induzierten Signalkaskaden in deren Folge die DNA-Reparatur- undReplikationsereignisse bestrahlter früh sowie spät replizierender S-Phase-Zellen koordiniert werden;- Aufschlüsselung des Einflusses singulär induzierter DNA-Läsionen auf die Aktivierung der DNA-Schadensantwortim Vergleich zur multiplen Reaktion, die nach Bestrahlung beobachtet wird;- Aufklärung der Funktion der Mediatorproteine Mdc1 und 53BP1 bei den beiden Hauptwegen der DSB(double-strand breaks)-Reparatur homologe Rekombination (homologous recombination, HR) undnicht-homologe Enden-Verknüpfung (non-homologous end joining, NHEJ);- Aufklärung der direkten Bedeutung der durch ionisierende Bestrahlung induzierten Zellzykluskontrolle aufdie Regulation der Initiations- und Elongationsphasen der Replikation.

1 2 3