Die BNT Chemicals GmbH (BNT) plant am Standort Bitterfeld-Wolfen im Chemiepark Bitterfeld eine im Sinne des BImSchG genehmigungsbedürftige Vakuum-Destillationsanlage zur Aufarbeitung von Abfällen aus ihrer Produktion und Rückgewinnung von Zinn zu errichten und zu betreiben. Bei der Herstellung von Zinnorganischen Verbindungen sind über die letzten Jahre werthaltige Abfälle angefallen, die momentan auf ca. 600 Tonnen beziffert werden können. Die Abfälle entstehen in den Sümpfen der sog. Grignard-Synthese. Dabei handelt es sich um Dibuthylzinndichlorid (DBTC) und Tributhylzinnchlorid (TBTC), welche einen nicht unerheblichen Teil an zurückgewinnbarem Zinn enthalten. Nach Schwierigkeiten den Abfall durch spezialisierte Firmen aufbereiten zu lassen, lagert dieser auf dem Gelände der BNT. Zum Zweck der Abfallreduzierung und Rückgewinnung werthaltiger Stoffe aus den vorhandenen Abfällen, will die BNT einen Vakuum-Destillationsanlage aufstellen und betreiben. Die Anlage soll ausschließlich hauseigene Abfälle aufbereiten. Es soll pro Tag ein Batch von 1200 kg (1500 kg Havariegewicht) der Sümpfe aus DBTC bzw. TBTC der Destillation portioniert zugeführt und verarbeitet werden. Es entstehen durch die thermische Trennung anorganische Pulver (Zinnverbindungen) und Organozinn-Kondensate. Es kommt zu keiner chemischen Reaktion, da es sich ausschließlich um ein unter Vakuum durchgeführtes Trennverfahren handelt. Die gewonnenen anorganischen Pulver sind abfallrechtlich noch einzustufen. Es wird jedoch davon ausgegangen, dass ein gefährlicher Wertstoff vorliegt. Nach Inbetriebnahme wird der Nachweis des „Endes der Abfalleigenschaft“ für diese Pulver angestrebt. Die Destillate werden entweder in die BNT-Prozesse zurückgeführt, oder wie gehabt als gefährlicher Abfall mit dem gleichen Abfallschüssel wie bisher über die vorhandenen Entsorgungswege entsorgt. Die geplante Anlage soll aufgestellt und betrieben sowie die Funktionalität in die BNT-Anlagen integriert werden.
Dieses Forschungsprojekt untersucht die Herkunft und Entwicklung erzbildender Flüssigkeiten und Formationsmechanismen an einer der bedeutendsten Zinn-Kupfer-Zink-Blei-Lagerstätte, der Neves Corvo in Portugal, in Verbindung mit Flüssigkeits- und Schmelzeinschlüssen und numerischen Simulationen. Dies ist ein wichtiges Forschungsprojekt, das dem Verständnis und der Entwicklung von Mineralressourcen im gesamten iberischen Pyritgürtel und ähnlichen Provinzen einen erheblichen Mehrwert verleihen wird.
Umweltchemie, Umweltanalytik und biologische Wirkungen (Wechselbeziehungen zwischen Chemie und Biologie) von (karzinogenen und/oder mutagenen) Metallverbindungen; neuerdings auch von Aluminium-, Silicium-, Zinn- und Titanverbindungen. Besonderes Gewicht haben Speziations-, Kreislauf-, Bioverfuegbarkeits-, Wechselwirkungs- und biochemische Untersuchungen (auch Biomonitoring und Kurzzeittests).
Zusammen mit der Bundesstelle für Chemikalien und dem Bundesinstitut für Risikobewertung führt das Umweltbundesamt (UBA) seit 2017 eine REACH-Stoffbewertung zu den registrierten Nanoformen von Zinkoxid durch. Die Auswertung der Daten zu Umweltverhalten und -wirkung der registrierten Zinkoxid-Nanoformen ist abgeschlossen. Auf Grundlage der von den Registranten vorgelegten Studien kommt das UBA zu dem Schluss, dass die getesteten Nanoformen eine vergleichbare aquatische Toxizität wie andere Zinkverbindungen haben und die harmonisierte Einstufung im Anhang VI der CLP -Verordnung als akut und chronisch gewässergefährdend der Kategorie 1 auch für die getesteten Nanoformen zutreffend ist. Es kann allerdings nicht ausgeschlossen werden, dass ein nanopartikelspezifischer Effekt zur Gesamttoxizität der getesteten Zinkoxid-Nanoformen beiträgt. Auch zeigen sich leichte Unterschiede in der Toxizität sowohl zwischen den verschiedenen Nanoformen als auch zwischen den Nanoformen und dem als Kontrolle mitgetesteten leichtlöslichen Zinkchlorid. Aus den von den Registranten vorgelegten Studien wird deutlich, dass sich die registrierten Nanoformen neben ihrer Größe und Geometrie vor allem in ihren Oberflächeneigenschaften, aber auch in ihrer Löslichkeit und Dispersionsstabilität über die Zeit unterscheiden. Im Rahmen der Stoffbewertung wurde für alle registrierten Nanoformen von Zinkoxid die Löslichkeit entsprechend des Screeningtests nach dem „Transformation/Dissolution Protokoll“ der OECD sowie die Dispersionsstabilität nach der OECD Prüfrichtlinie 318 bestimmt. Basierend auf diesen Ergebnissen wurden von den Registranten drei Nanoformen ausgewählt, für die die toxische Langzeitwirkung auf Algen und Flohkrebse anhand der OECD-Prüfrichtlinien 201 und 211 untersucht wurde. Gemäß REACH-Verordnung liegt es in der Verantwortung der Registranten, sicherzustellen, dass die vorliegenden Informationen hinreichend sind, um die Risiken aller von der Registrierung abgedeckten Formen zu bewerten. Die Prüfung der Erfüllung dieser Verpflichtung ist nicht Gegenstand der Stoffbewertung, sondern wird ggf. durch die ECHA im Rahmen einer Dossierbewertung stichprobenhaft geprüft. Zinkoxid ist ein chemischer Grundstoff, der für die Herstellung unterschiedlichster Produkte eingesetzt wird. Weltweit werden große Mengen pigmentäres und mikroskaliges Zinkoxid als Weißpigment in Wandfarben, als Additiv zur Vulkanisierung von Gummi oder als Zusatz zu Zement eingesetzt. Nanopartikuläres Zinkoxid weist auf Grundlage seiner geringen Größe und großen spezifischen Oberfläche spezielle physikalisch-chemische Eigenschaften auf. Hierzu zählen katalytische, optische und elektronische Eigenschaften. Diese Eigenschaften eröffnen zusätzliche Einsatzmöglichkeiten für Zinkoxid, wie z.B. als UV-Filter in Sonnenschutzmitteln, in Textilien, in Klarlacken oder für transparenten Kunststoffe. Die Stoffbewertung ist ein Instrument der REACH-Verordnung, anhand dessen die zuständigen Behörden der EU-Mitgliedstaaten klären, ob sich aus der Herstellung oder Verwendung eines in der EU registrierten Stoffes ein Risiko für die menschliche Gesundheit und/oder die Umwelt ergibt. Zur Bewertung des Stoffrisikos werden sowohl die Daten, die bei der Registrierung des Stoffes zur Verfügung gestellt wurden, als auch alle weiteren verfügbaren Informationsquellen zu Rate gezogen. Sollte die vorhandene Datenlage keine eindeutige Beurteilung des Risikos ermöglichen, können die nationalen Behörden weitere Informationen von den Registranten des bewerteten Stoffes anfordern. Kann die Besorgnis nicht ausgeräumt werden oder erhärtet sich der Risikoverdacht, kann es als Konsequenz einer Stoffbewertung zu EU-weiten Risikomanagementmaßnahmen, wie z.B. Beschränkungen des Stoffes, Identifizierung als besonders besorgniserregend oder andere Maßnahmen, wie eine harmonisierte Einstufung nach CLP-Verordnung, kommen. Der Fokus der Stoffbewertung von Zinkoxid durch die deutschen Bundesoberbehörden liegt auf den im Registrierungsdossier enthaltenen Nanoformen. Unter Nanoformen eines Stoffes versteht man die Formen eines chemischen Stoffes, die der Definitionsempfehlung der EU zu Nanomaterialien entsprechen. Das UBA ist alleine für die Umweltaspekte der Stoffbewertung von Zinkoxid zuständig. Die Aspekte hinsichtlich der menschlichen Gesundheit liegen in der Verantwortung des Bundesinstitut für Risikobewertung.
Die Evonik Operations GmbH hat mit Datum vom 20.02.2020, zuletzt ergänzt am 21.09.2021, einen Antrag auf Genehmigung nach § 16 BImSchG zur wesentlichen Änderung des Tenside-Betriebes am Standort Goldschmidtstraße 100 in 45127 Essen gestellt. Die geplante Änderung umfasst im Wesentlichen: • Austausch eines Misch- und Reaktionsbehälters ohne Erhöhung der Produkti-onskapazität • Änderung der Mengenanteile der internen Produktionskapazitäten sowie Entfall der Herstellung von Zinnverbindungen • Anpassung des Stoffrahmens der BE 330 an die aktuelle GHS Kennzeichnung • Änderungen bei Verfahren und Verfahrensrahmen der BE 330 • Demontage einer Kleingebindeabfüllung sowie der Zinnoxideinsaugekabine, Austausch zweier Pumpen gegen mobile Pumpen und Nutzung eines Behälters für das Kreislaufwasser der Rückkühlanlagen
Eine Schlüsselrolle bei der Steigerung des Wirkungsgrades von CIGS-Zellen spielt der pn-Übergang zwischen CIGS und Puffermaterial. Durch quantenmechanische Rechnungen auf Grundlage der Dichtefunktionaltheorie soll dazu beigetragen werden, dass der Einfluss der Absorber-Puffer-Grenzfläche auf den solaren Wirkungsgrad aufgeklärt und Maßnahmen zur Erhöhung des Wirkungsgrades erarbeitet werden. Durch die theoretischen Untersuchungen der Grenzfläche zwischen Absorber und Puffermaterial sollen Grenzflächenstruktur, Defekteigenschaften und elektronische Eigenschaften und Interdiffusionsmechanismen aufgeklärt werden. Hierzu wird die Beschaffenheit verschiedener Absorber/Puffer (In2S3 und Zn(O,S)) Grenzflächen untersucht. Die Rechnungen liefern gleichzeitig Information über die elektronische Struktur der Grenzfläche, d. h. Bandanpassung und Lage des Ferminiveaus, über den Einfluss von Diffusionsvorgängen und grenzflächeninduzierten Dehnungen.
Der Absorber wird im Firmenverbund der Solibro durch das Verfahren der Ko-verdampfung hergestellt. Ziel des Vorhabens ist, ein verbessertes Verständnis der Wachstumsbedingungen und Grenzflächenkonditionierung der CIGS-Schicht Eigenschaften zu erreichen. Dieses Verständnis der kritischen Wachstumsparameter und materialspezifischen Limitierungen soll die Erhöhung der Prozessgeschwindigkeit bei gleichbleibender Effizienz ermöglichen und damit eine Steigerung des Produktionsvolumens. Das Ziel ist die CIGS Abscheidungsgeschwindigkeit um bis zu 50 % zu erhöhen. Im Bereich des pn-Übergangs ist das Ziel innerhalb des Projektes, das Prozessfenster für den alternativen Cd freien Puffer Zn(O,S) Abscheidung mittels ALD zu definieren. Schwerpunkte im Bereich der Zn(O,S) Abscheidung liegen dabei einerseits in der Analyse der Grenzflächen sowie andererseits in einer Verbesserung der Wachstumsbedingungen in Bezug auf die Homogenität und Zusammensetzung der Schichten. Ziel ist es, im Vergleich mit der chemischen-Bad-Abscheidung von CdS, eine Steigerung des Wirkungsgrades um bis zu 0,5 % zu erreichen.
Ziel des Vorhabens ist es, zusammen mit den Kooperationspartnern die bisher wenig untersuchten Stoffeinträge von hydrothermalen Systemen des Kermadec-Vulkanbogens in den Ozean zu charakterisieren und deren Bedeutung für den globalen Stoffhaushalt der Meere sowie die lokalen chemischen und biologischen Prozesse in der Wassersäule und am Meeresboden zu verstehen. Ein besonderer Fokus wird auf die Bedeutung chemischer Speziierung und Komplexierung von Metallen und Spurenelementen (unter besonderer Berücksichtigung von Interaktionen mit gelöstem organischem Material) für den Export in den Ozean und die Bioverfügbarkeit gelegt. Um diese Ziele zu erreichen, sollen hydrothermale Fluide, Festphasen, und Plumes und biologische Gemeinschaften von verschiedenartigen Hydrothermalquellen im südlichen und mittleren Kermadec-Bogen mit Hilfe des ROVs Quest, CTD/Wasserschöpfern und Multicorern interdisziplinär untersucht werden. Neben der Probenaufbereitung und Konservierung werden an Bord Analysen von kurzlebigen chemischen Spezies durchgeführt, Weiterhin werden hydrothermale Schlüsselparameter wie pH, Eh, O2 und Mg direkt an Bord bestimmt. Für Fe-Isotopen Analysen im konzentrierten hydrothermalen Fluid, aufsteigender Plume, lateral verdriftender Plume werden Probenaliquote genommen. Eine Fraktionierung in gelöste, kolloidale und partikuläre Größenfraktionen wird mithilfe von gestaffelten Membranfiltern entsprechender Porengröße durchgeführt. Die Membranfilter werden direkt bei -20°C eingefroren. Sedimentproben werden unter Luftausschluss direkt eingefroren. Außerdem werden Proben für die organische und anorganische Speziierung von gelösten Schwermetallen (Fe, Cu, Zn und Ni) sowie die Bestimmung von den Gesamtgehalten in unterschiedlichen Größenfraktionen genommen. Die Beprobung für die Schwermetallspezifizierung wird flächendeckend an allen Arbeitsgebieten vom konzentrierten hydrothermalen Fluid bis zur Vermischungszone in der Plume und dem umliegenden Meerwasser erfolgen.
Origin | Count |
---|---|
Bund | 58 |
Land | 3 |
Wissenschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 7 |
Förderprogramm | 48 |
Text | 2 |
Umweltprüfung | 2 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 14 |
offen | 47 |
Language | Count |
---|---|
Deutsch | 59 |
Englisch | 4 |
Resource type | Count |
---|---|
Dokument | 4 |
Keine | 35 |
Webseite | 22 |
Topic | Count |
---|---|
Boden | 32 |
Lebewesen & Lebensräume | 35 |
Luft | 32 |
Mensch & Umwelt | 61 |
Wasser | 27 |
Weitere | 55 |