Wasserstoff zeigt im Vergleich zu anderen Elementen eine sehr hohe Beweglichkeit in Metallen. Allerdings werden bei der Bestimmung der Diffusionskoeffizienten oftmals erhebliche systematische Fehler beobachtet. So weichen die von verschiedenen Arbeitsgruppen fuer die Wanderung von Wasserstoff in Zirkon bestimmte Diffusionskoeffizienten im mittleren Temperaturbereich von 200 - 600 Grad C bis zu etwa zwei Groessenordnungen voneinander ab. Es schien moeglich, dass diese Abweichungen auf den Einfluss sauerstoffhaltiger Oberflaechenschichten zurueckzufuehren sind, da der Wasserstoff bei allen bisherigen Untersuchungen durch mindestens eine solche Schicht hindurchdiffundieren musste. Die Diffusionskoeffizienten fuer Tritium in diesen Oberflaechenschichten sind im Vergleich zur Beweglichkeit im Metall um mehr als sieben Groessenordnungen kleiner, so dass bereits duenne Schichten eine erhebliche Verzoegerung in der Diffusion bewirken koennen. Es wurde deshalb eine neue Methode entwickelt, bei der die Diffusion in den Oberflaechenschichten vermieden wird. Ausserdem wurde der Einfluss der Sauerstoff-Konzentration auf die Beweglichkeit von Tritium in Zircaloy bestimmt. Diese Arbeiten, welche auch fuer die Kernbrennstoff-Wiederaufbereitung von erheblicher Bedeutung sind, werden fortgesetzt. Im Vordergrund stehen dabei die Untersuchungen ueber den Einfluss von Fremdstoffen und Strahlenschaeden auf die Tritium-Diffusion in Zirkon und Zirkon-Legierungen.
Alle unedlen Gebrauchsmetalle, wie Aluminium, Eisen und Zirkon, bilden bei der Reaktion mit Gasen oder waessrigen Medien mehr oder minder festhaftende Grenzschichten, welche den Angriff der korrodierenden Agenzien stark hemmen. Die Herabsetzung der Reaktionsgeschwindigkeit haengt von einer Reihe von Faktoren ab: Temperatur, Dicke und Haftung der Schicht, Diffusionsgeschwindigkeit der Agenzien, z.B. des Sauerstoffs, und der Metallkationen, etc. Die Haftung der Schicht und die Beweglichkeit der Reaktionspartner haengt wesentlich von der Konzentration von Fremdelementen in dem Matrixmetall und in der Schicht ab. Sowohl dieser Einfluss als auch die Abhaengigkeit des Konzentrationsverhaeltnisses der Fremdelemente in der Schicht und der Matrix von den Reaktionsbedingungen soll untersucht werden. Neben der allgemeinen, leicht erkennbaren technischen Bedeutung sind diese Arbeiten auch fuer die Wiederaufbereitung von Kernbrennstoffen von erheblichem Interesse. Wasserstoff bewirkt in vielen Metallen eine Versproedung, welche zu erhoehter Anfaelligkeit des Probestueckes gegen Korrosion und Bruch fuehrt. Generell sind zwei Wege fuer die Aufnahme des Wasserstoffs offen: a) Zersetzung von Wasser an der Oberflaeche und anschliessende Diffusion des Wasserstoffs durch die schuetzende Oxidschicht, b) Zersetzung des Wassers und Aufnahme des Wasserstoffs unmittelbar an der Metalloberflaeche, welche in Ritzen oder nicht festhaftenden Teilen der Schicht fuer einen direkten Kontakt mit der Loesung zugaenglich ist. Beide Wege sollen untersucht werden.
Das Altkristallin Ostkretas stellt eine Besonderheit im kretischen Deckenstapel dar. Im Zuge der alpidischen Subduktion wurde es auf lediglich ca. 300 Grad C aufgeheizt, so dass die alpidische Deformation auf diskrete Scherzonen beschränkt ist. Infolgedessen ist das präalpidische strukturelle Inventar im Altkristallin noch weitgehend vorhanden. Detaillierte strukturelle und mikrogefügekundliche Untersuchungen der Altkristallineinheiten (Gneise, Glimmerschiefer, Amphibolite etc.) sollen dazu beitragen, die bisher kaum verstandene präalpidische Kinematik sowie die beteiligten Deformationsmechanismen und -bedingungen zu entschlüsseln. Erste U-Th-Pb-Datierungen von Monaziten mit der EMP-Methode belegen, dass die präalpidische Metamorphose im Perm stattgefunden haben muß. Weitere geochronologische Untersuchungen sollen helfen, die noch fehlenden Zeitmarken im Altkristallin festzulegen. Konventionelle U-Pb-Datierungen von Monazit und Zirkon werden es erlauben, das Alter der präalpidischen Metamorphose erstmals sehr exakt zu datieren. Darüber hinaus sollte sich mit dieser Methode auch das Protolithalter zweier neu aufgefundener Orthogneiskomplexe bestimmen lassen. Im Hinblick auf eine ICDP-Bohrung in der Mesara-Ebene Mittelkretas kommt der Untersuchung des Altkristallins keine unbedeutende Rolle zu, da nicht ausgeschlossen werden kann, dass Altkristallin auch von der Bohrung angetroffen werden wird.
Die Metallsalzextraktion hat ihre industrielle Profilierung in den 40iger Jahren bei der Uranextraktion erlebt. Im weiteren erstreckte sich die Anwendung auf teure Metalle, wie Vanadium, Zirkon, Hafnium, Niob und Tantal. Erst in den 60iger Jahren gelang der Durchbruch mit der Gewinnung von Kupfer aus sehr verduennten Laugen. Heute wird diese Trennoperation grob gesagt fuer das halbe Periodensystem verwendet. Im Zuge von Umweltschutzerwaegungen werden auch immer billigere Metalle, wie z.B. Zink, Arsen, damit behandelt. Der Wert- bzw. Schadmetallgehalt im Abwasser liegt bei dieser Methode i.a. zwischen 0,5 und 20 g/l. Das Ziel dieser Unit Operation ist dabei entweder eine Reinigung eines Elektrolyten von Begleitelementen oder eine Aufkonzentrierung, die eine Weiterbearbeitung oekonomischer werden laesst, sowie die Umwandlung einer Spezies in eine einfacher gewinnbare Form. Aktuelle Probleme, die von uns zur Zeit behandelt werden, ist die Abtrennung des Schadstoffes Arsen aus einem Kupferelektrolyten, eine analoge Gewinnung eines Wertmetalls aus einem Zinkelektrolyten, eine Rueckfuehrung von Nickel, Zink etc. aus Spuelwaessern in der Galvanoindustrie, eine selektive Trennung der Edelmetalle Silber, Kupfer und Polladium sowie eine Aufarbeitung von Nickel aus einer chemischen Reize.
Gelegentlich wird in den Medien über Funde von radioaktiven Gegenständen berichtet. Dazu gehören auch Alltagsgegenstände, beispielsweise Geschirr mit bestimmten Glasuren. In manchen Fällen sind diese nicht eindeutig als solche erkennbar und es wird nur zufällig festgestellt, dass radioaktive Stoffe enthalten sind. Doch woher stammen diese? Früher wurden radioaktive Stoffe häufig aufgrund bestimmter Eigenschaften zur Herstellung von Gegenständen verwendet. So sind die Fliesen des Rosenthaler Platzes dafür bekannt, dass die aufgebrachte leuchtend orangefarbige Glasur leicht radioaktiv ist. Die Radioaktivität war dabei meist nur ein ungewollter und in der Anfangszeit unbekannter Nebeneffekt. Im Laufe der Zeit entwickelte sich jedoch ein Bewusstsein dafür, dass ionisierende Strahlung eine Gefahr für die menschlichen Gesundheit darstellt. Dies führte dazu, dass Produkte mit radioaktiven Stoffen heutzutage nicht mehr oder nur noch für ganz bestimmte Anwendungsfälle produziert und verwendet werden. Auch heute kann es jedoch in seltenen Fällen noch zu einer Kontamination kommen, z.B. wenn versehentlich eine radioaktive Quelle bei der Wiederverwertung von Metallschrott mit eingeschmolzen wird. Von den meisten der heute noch im Umlauf befindlichen Gegenständen geht nur eine geringe Strahlenbelastung aus, so dass die Handhabung in der Regel unproblematisch ist. Es ist jedoch zu beachten, dass auch diese spezifische Aktivitäten aufweisen können, aufgrund derer man die Gegenstände nicht über den Hausmüll entsorgen darf. In diesem Fall kann die Zentralstelle für radioaktive Abfälle (ZRA) kontaktiert werden. Bestimmte uranhaltige Verbindungen sind dafür bekannt, dass sie eine schöne intensive Farbe ergeben. Daher wurden sie vor allem ab Mitte des 19. Jahrhunderts als Zusatz in Glasuren beispielsweise für Fliesen oder Geschirr verwendet. Auch für die Herstellung gefärbter Gläser oder Vasen kamen sie zur Verwendung. Bei Glasuren sind insbesondere kräftige Orangefarben häufig vertreten, je nach Ausgangsmaterial und Produktionsart können aber auch andere Farben entstehen. Uranglas, welches meist in hellen, gelben oder grünen Farben vorkommt, kann man leicht daran erkennen, dass es durch UV-Licht zum Leuchten angeregt wird. In der Regel sind diese Gegenstände etwa als Sammelobjekte gesundheitlich unbedenklich, da relativ geringe Strahlungswerte auftreten und das uranhaltige Material gebunden vorliegt. Säuren können jedoch die Uranverbindungen aus dem Material herauslösen. Da in vielen Lebensmitteln (z.B. in Früchten) Säuren vorhanden sind oder bei der Nahrungszubereitung Zutaten wie Essig verwendet werden, sollte man Geschirr mit uranhaltiger Glasur nicht als Essgeschirr verwenden, da sonst die Gefahr einer Aufnahme mit der Nahrung besteht. Für die Leuchtzifferblätter von Uhren wurden früher Farben verwendet, die radioaktives Radium oder Promethium enthielten. Hierbei traten durch die Produktionsbedingungen teils schwerwiegende gesundheitliche Auswirkungen auf, wie auch bei dem weithin bekannten Fall der „Radium Girls“. Daher wurde auf das weitaus ungefährlichere radioaktive Tritium gewechselt. Inzwischen gibt es auch nicht-radioaktive Alternativen, diese sind aber nicht selbstleuchtend. Daher wird Tritium auch heute noch verwendet. Seine Eigenschaften werden auch in den frei erhältlichen, mit Tritium gefüllten, nachtleuchtenden Schlüsselanhängern genutzt. Weitere Informationen zu Leuchtzifferblättern auf der Seite des Bundesamtes für Strahlenschutz In gasbetriebenen Leuchten werden sogenannte Glühstrümpfe verwendet. Diese wurden bei der Produktion in einer Lösung mit einer radioaktiven Thorium-haltigen Verbindung getränkt. Die nach dem Verbrennen bleibende Struktur erzeugt aus der kaum sichtbaren Gasflamme das gewünschte helle Licht. Der Effekt entsteht dabei nicht durch die radioaktive Eigenschaft, das Thorium diente vor allem der Stabilität der Struktur. Seit einigen Jahrzehnten können Glühstrümpfe auch ohne den Zusatz von Thorium produziert werden. In Deutschland endete die letzte Glühstrumpfproduktion 2004, seit 2011 ist die Herstellung und Inverkehrbringen thoriumhaltiger Glühstrümpfe nicht mehr erlaubt (mit Ausnahme von zur Straßenbeleuchtung verwendeter Glühstrümpfe; §39 StrlSchG). In Berlin erfolgt aufgrund von Energiesparmaßnahmen der Austausch von Gasleuchten auf formgleiche LED-Leuchten. Weiterhin erhalten bleiben sollen jedoch ca. 3.300 Gasleuchten mit historischer Bedeutung. Ein Thorium-haltiger Glühstrumpf ist in der Regel nur gering radioaktiv. Das größte Risiko geht davon aus, wenn Partikel des Glühstrumpfes eingeatmet werden, insbesondere beim erstmaligen Brennen oder der Handhabung der fragilen abgebrannten Glühstrümpfe. Weitere Informationen auf der Seite des Fachverbands für Strahlenschutz e.V. In der ersten Hälfte des 20. Jahrhunderts wurden aus medizinischen Gründen sogenannte Radium-Emanatoren verwendet. In diesen befindet sich eine Quelle mit dem natürlich radioaktiven Isotop Radium-226, welches u. a. in das ebenfalls schwach radioaktive Radon zerfällt. In die Gefäße wurde Wasser eingefüllt, welches das Radon aufnahm. Das Wasser wurde dann in als gesundheitsfördernd geltenden Trinkkuren angewendet. Der radioaktive Stoff ist in einer Quelle in dem Gefäß gebunden. Solange diese nicht beschädigt wird, so dass das Radium etwa als Staub eingeatmet oder mit Nahrung eingenommen wird, geht keine unmittelbare Gefahr davon aus. Dennoch kann die Dosisleistung ausreichen, dass der Grenzwert von 1 mSv im Jahr überschritten wird, der u.a. für beruflich strahlenexponierte Personen festgelegt ist. Die Becher sind auch heute noch etwa unter Sammlern im Umlauf. Sofern die radioaktive Quelle noch enthalten ist, ist für den Besitz eine strahlenschutzrechtliche Genehmigung erforderlich, da hier in der Regel die Freigrenzen für einen genehmigungsfreien Umgang überschritten sind. Einige Farben von (Halb-)Edelsteinen entstehen nur durch die Einwirkung von Strahlung. Diese kann sowohl durch natürliche als auch durch künstlich erzeugte Radioaktivität erfolgen. Wenn zur Bestrahlung Beta-oder Gamma-Strahlung eingesetzt wird, sind die Steine selber nicht radioaktiv. Es kann jedoch auch Neutronenstrahlung verwendet werden, wodurch die bestrahlten Edelsteine selber ebenfalls radioaktiv werden. Ein bekanntes Beispiel hierfür ist der Edelstein Topas. Während hellere Blautöne durch Betastrahlung erzielt wird, kommt für eine tiefblaue Färbung („London Blue“) Neutronenstrahlung zum Einsatz. Da die Radioaktivität mit der Zeit abklingt, dürfen diese, um die gesundheitlichen Risiken zu verringern, erst nach einer ausreichenden Wartezeit in den Verkauf kommen. Außerdem gibt es Edelsteine, die einen Anteil natürlich radioaktiver Stoffe enthalten. Diese geben nur eine geringe Strahlung ab und können daher bedenkenlos gehandhabt werden. Edelsteine die eine natürliche Radioaktivität aufweisen können sind beispielsweise Zirkon oder Ekanit. Aber auch andere Schmuckstücke können radioaktive Strahlung abgeben. Neben Uranglas können auch Gesteine oder Mineralien verarbeitet sein, die eine natürliche Radioaktivität aufweisen. So tauchen beispielsweise gelegentlich Amulette im Handel auf, die aufgrund des verarbeiteten Materials mit Anteilen von Uran oder Thorium leicht radioaktiv sind. Weitere Informationen auf der Seite des Bundesamtes für Strahlenschutz
Eudialyte and eudialyte-group minerals (EGM) are unique tracers of peralkaline silica-undersaturated melts. They receive global interest as potential resources for high-field-strength elements (HFSE) (e. g. Zr, Nb, Ta, and rare-earth elements; REE), i. e. critical materials for modern technologies. The main condition for magmatic crystallization of eudialyte and EGM is that the concentration of Zr in parental melt should reach the saturation level. Thus, the solubility of eudialyte was studied in the system at temperatures between 750 and 1000 °C and pressures of 100 and 200 MPa. Liquid phases in run products are eudialyte, parakeldyshite and albite. Eudialyte is stable between 750 and 900 °C, and decomposes to parakeldyshite between 900 and 1000°C. Eudialyte crystallization in dry peralkaline silica-undersaturated melt at 750 and -850 °C requires minimum 0.2-0.22 wt.% ZrO2 in the melt. In melts with high amounts of dissolved H2O the saturation level in within the same temperature interval is much higher, at 1.1-2.85 wt.% ZrO2. Thus, peralkaline melts should be dry to crystallize EGM at ZrO2 concentrations between 0.2 and 0.3 wt.%. LA-ICP-MS results show that REEs and HFSEs are strongly compatible with eudialyte as the eudialyte-melt distribution coefficients (D) vary from 2 to 90. Light REEs and especially La tend to have lower D values than heavy REEs. The data reflect that the concentrations of REEs and HFSEs in the eudialyte solid solution are mainly determined by the Zr concentrations in the melt: the lowest partition coefficients are observed in experiments with the highest eudialyte solubility, i.e., in experiments at high temperature and with H2O content This data report is the supplement to the publication (Nikolenko et al., 2024, in prep.). This study presents a combined experimental research, EPMA and LA ICP-MS studies. This document describes the LA-ICP-MS analytical methods, sample preparation and the in-situ LA-ICP-MS element composition of eudialyte and peralkaline silica-undersaturated melts. Eudialyte, which was used in experiments is a natural mineral, that had been collected from a pegmatite body on mount Eveslogchorr in the Khibina Massif, Kola Peninsula, Russia. Eudialyte crystals were crushed in a mortar and clear, inclusion-free fragments were hand-picked under a binocular. Three synthetic glasses with variable Na-Al molar ratios were prepared from finely ground mixtures of silica (p.a., Merck®), aluminium oxide (γ-phase, 99.97%, 3 μm powder, Alfa Aesar®), and sodiumcarbonate (anhydrous, p.a., Merck®). The glasses were synthesized by sintering starting mixtures in a platinum crucible first at 900 °C for 1 hour, then crushing of the sintered material and remelting it two or three times at 1100-1200 °C for about 2 hours, with intermediate quenching in cold water and grinding the crushed glass fragments to the grain size of less than 1 mm. Mixtures of the Khibina eudialyte and one of the synthetic glasses were ground in agate mortar to fine powders under acetone, dried at 100 °C for 2 hours, loaded into platinum capsules (outer and inner diameters 4.4 and 4.0 mm respectively) and welded shut. In some runs, distilled water (Merck, Suprapur®) was added to the starting charges before welding.
This database contains a compilation of published zircon geochronology, chemistry and isotope data. The database was created through automated web scraping of the Figshare data repository. Data included U-Pb and Pb-Pb dating, Lu-Hf isotopes, trace element and rare earth element chemistry and isotopes. Where available, metadata on the analytical method, lithology, sample description and sampling coordinates are included. All analyses include a citation and doi link to the original data hosted on Figshare. See metadata table for descriptions of table headers. See associated manuscript for web scraping code.
Origin | Count |
---|---|
Bund | 80 |
Land | 6 |
Wissenschaft | 44 |
Type | Count |
---|---|
Chemische Verbindung | 10 |
Förderprogramm | 63 |
Messwerte | 10 |
Strukturierter Datensatz | 11 |
Text | 8 |
unbekannt | 34 |
License | Count |
---|---|
geschlossen | 19 |
offen | 88 |
unbekannt | 19 |
Language | Count |
---|---|
Deutsch | 69 |
Englisch | 59 |
Resource type | Count |
---|---|
Archiv | 3 |
Datei | 10 |
Dokument | 2 |
Keine | 81 |
Webseite | 32 |
Topic | Count |
---|---|
Boden | 62 |
Lebewesen & Lebensräume | 68 |
Luft | 38 |
Mensch & Umwelt | 126 |
Wasser | 41 |
Weitere | 114 |