Eine Schlüsselrolle bei der Steigerung des Wirkungsgrades von CIGS-Zellen spielt der pn-Übergang zwischen CIGS und Puffermaterial. Durch quantenmechanische Rechnungen auf Grundlage der Dichtefunktionaltheorie soll dazu beigetragen werden, dass der Einfluss der Absorber-Puffer-Grenzfläche auf den solaren Wirkungsgrad aufgeklärt und Maßnahmen zur Erhöhung des Wirkungsgrades erarbeitet werden. Durch die theoretischen Untersuchungen der Grenzfläche zwischen Absorber und Puffermaterial sollen Grenzflächenstruktur, Defekteigenschaften und elektronische Eigenschaften und Interdiffusionsmechanismen aufgeklärt werden. Hierzu wird die Beschaffenheit verschiedener Absorber/Puffer (In2S3 und Zn(O,S)) Grenzflächen untersucht. Die Rechnungen liefern gleichzeitig Information über die elektronische Struktur der Grenzfläche, d. h. Bandanpassung und Lage des Ferminiveaus, über den Einfluss von Diffusionsvorgängen und grenzflächeninduzierten Dehnungen.
Der Absorber wird im Firmenverbund der Solibro durch das Verfahren der Ko-verdampfung hergestellt. Ziel des Vorhabens ist, ein verbessertes Verständnis der Wachstumsbedingungen und Grenzflächenkonditionierung der CIGS-Schicht Eigenschaften zu erreichen. Dieses Verständnis der kritischen Wachstumsparameter und materialspezifischen Limitierungen soll die Erhöhung der Prozessgeschwindigkeit bei gleichbleibender Effizienz ermöglichen und damit eine Steigerung des Produktionsvolumens. Das Ziel ist die CIGS Abscheidungsgeschwindigkeit um bis zu 50 % zu erhöhen. Im Bereich des pn-Übergangs ist das Ziel innerhalb des Projektes, das Prozessfenster für den alternativen Cd freien Puffer Zn(O,S) Abscheidung mittels ALD zu definieren. Schwerpunkte im Bereich der Zn(O,S) Abscheidung liegen dabei einerseits in der Analyse der Grenzflächen sowie andererseits in einer Verbesserung der Wachstumsbedingungen in Bezug auf die Homogenität und Zusammensetzung der Schichten. Ziel ist es, im Vergleich mit der chemischen-Bad-Abscheidung von CdS, eine Steigerung des Wirkungsgrades um bis zu 0,5 % zu erreichen.