API src

Found 115 results.

Similar terms

s/basalts/Basalt/gi

Genese von Wüstenpflaster

Das Projekt "Genese von Wüstenpflaster" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft / Universität Bayreuth. Es wird/wurde ausgeführt durch: Universität Bayreuth, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl Geomorphologie.Wüstenpflaster (desert pavements) gelten meist als Auswehungsgebiete (Quelle) von Staub. Oft - besonders über basaltischem Untergrund - beobachtet man aber Anreicherung von allochtonen Staubablagerungen mit vesikulärem A-Horizont unter der offenbar angehobenen Steinlage. An der Typlokalität Cima Volcanic Field (California, USA), wo von amerikanischen Geowissenschaftlern eine alternative Theorie zur Entstehung der Wüstenpflaster entwickelt wurde, wurde in Kooperation mit Prof. Dr. Arno Kleber und Diplomanten (Geogr. Institut der TU Dresden) mittels Lumineszenz-Datierungen versucht, weitere Argumente in die kontroverse Diskussion einzubringen. Ähnliche Untersuchungen werden nun auf Lanzarote weitergeführt.

Baustoffe aus CO2-basierter Carbonfaser und Granit, Teilvorhaben: Entwicklung und Bau von Bahnschwellen auf CFS Basis

Das Projekt "Baustoffe aus CO2-basierter Carbonfaser und Granit, Teilvorhaben: Entwicklung und Bau von Bahnschwellen auf CFS Basis" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Richter & Müller GmbH.

CO2 Permanent-Speicherung als Feststoff in Basalt

Das Projekt "CO2 Permanent-Speicherung als Feststoff in Basalt" wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR).Das ACT4 Projekt PERBAS will die Technologie der dauerhaften Speicherung ( größer als 1000 Jahre) großer Mengen (20 Gt/Jahr) von CO2, mineralisiert in marinem Basaltgestein, weiterentwickeln und auf ein Technology Readiness Level (TRL) von 5 bis 6 anheben. Dazu wird eine Injektion von superkritischem CO2 in den porösen Oberbereich von alten Lavaflüssen, sedimentäre Zwischenlagen oder unterhalb von Basaltkomplexen angenommen. Zusätzlich zur permanenten Lagerung über die Mineralisierung, können etwaig nicht mineralisierte Restmengen von CO2 durch wenig poröse Sedimente, dichte Basaltlagen oder alterierte Aschelagen im abgedichteten Reservoir gehalten werden. Das deutsche Teilprojekt CO2PR konzentriert sich auf die Entwicklung einer Monitoring-Strategie für geophysikalische Fernerkundung (Seismik / EM). Dieses Ziel soll über vier Hauptaufgaben erreicht werden, die sich die Partner GEOMAR und TEEC gemäß ihrer Expertise aufteilen, wobei jede für sich einen verwertbaren Einzelbeitrag bildet. Die Aufgaben des Projektpartner GEOMAR werden im Teilprojekt CO2PR - GEOMAR erfasst: 1) Leitung des Gesamtprojektes PERBAS mit 10 Konsortialpartnern 2) Entwicklung einer neuen autonomen Plattform mit gestecktem 3-Komponenten-Seismometer. 3) Geophysikalische Vermessung eines potentiellen Speicherstandortes mit dem Ziel, die Grenzen für eine geophysikalische Fernerkundung (Seismik und Elektromagnetik) als Monitoring-Verfahren zu bestimmen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Untersuchung der Rolle von Vulkanismus am Beginn und Ende des Paläozän-Eozän-Temperaturemaximum basierend auf Sedimenten der IODP-Expedition 396

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Untersuchung der Rolle von Vulkanismus am Beginn und Ende des Paläozän-Eozän-Temperaturemaximum basierend auf Sedimenten der IODP-Expedition 396" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Es ist bekannt, dass Vulkanausbrüche das Klima auf verschiedene Weise beeinflussen. Diese reichen von kurzfristigen Auswirkungen wie Sulfat-Injektionen, die die einfallende Sonnenstrahlung reduzieren und zu Abkühlung führen, bis zu mittelfristigen Auswirkungen wie Erwärmung durch Kohlendioxid-Entgasung. Langfristig können Auswirkungen wie eine verstärkte Verwitterung eingelagerter Basalte zu einer Entfernung von Kohlendioxid und damit Abkühlung führen. Lange Perioden intensiven Vulkanismus, die als Large Igneous Provinces (LIPs) bekannt sind, können besonders tiefgreifende Auswirkungen auf das Klima haben, wobei mehrere LIPs entweder mit der globalen Erwärmung oder Abkühlung in der Erdgeschichte sowie mit Massenaussterben in Verbindung gebracht werden. Das Paläozän-Eozän-Temperaturemaximum (PETM), eine 200.000 Jahre lange Periode intensiver globaler Erwärmung vor ca. 56 Millionen Jahren, ereignete sich zur gleichen Zeit wie die Entstehung eines LIP, der North Atlantic Igneous Province (NAIP). Die NAIP-Entstehung wurde als Ursache für das PETM vorgeschlagen, da während des Vulkanismus Kohlendioxid und Methan freigesetzt werden, welches zu einer schnellen Erwärmung führt. Es wurde auch vermutet, dass die Ablagerung von Vulkanasche während des NAIP das Klima abgekühlt hat. Als solches ist das PETM eine ideale Periode, um die Auswirkungen des Vulkanismus auf das Erdsystem zu untersuchen. Expedition 396 des International Ocean Discovery Program (IODP) hat erfolgreich eine Reihe von langen Sedimentsequenzen aus dem PETM-Zeitalter am norwegischen Rand geborgen. In diesem Projekt beabsichtige ich, detaillierte deskriptive, geochemische und modellbasierte Untersuchungen mit den Sedimenten der Expedition 396 durchzuführen, um die Rolle des NAIP-Vulkanismus im PETM zu dokumentieren. Erstens wird die Intensität des Vulkanismus durch neue Schätzungen der Kohlendioxid-, Methan- und Sulfatemissionen bewertet, um die Rolle der Gase auf den Klimawandel zu bestimmen. Durch detaillierte geochemische Untersuchungen werden die Auswirkungen der Ascheablagerung auf den Kohlenstoffkreislauf bewertet mit Schwerpunkt auf der Rolle der Asche als Nährstofflieferant für Phytoplankton liegt. Die potenziellen Auswirkungen der Ascheablagerung auf die Speicherung von Kohlenstoff im Sediment werden ebenfalls geochemisch und isotopisch untersucht. Abschließend werden die Ergebnisse unter Verwendung von Erdsystemmodelle kombiniert, um die genaue Rolle des Vulkanismus im PETM zu bestimmen. Die erwarteten Ergebnisse werden uns neue Erkenntnisse über die Rolle der LIP-Entstehung und der Ablagerung von Vulkanasche beim Klimawandel geben. Sedimente von Expedition 396 bieten eine einzigartige Gelegenheit, den geochemischen Abdruck des Vulkanismus hochauflösend zu untersuchen. Die Ergebnisse dieser Arbeit werden zu einer erheblichen Verbesserung unseres Verständnisses des PETM führen.

CO2 Permanent-Speicherung als Feststoff in Basalt, Teilvorhaben: Seismische und elektromagnetische Parametrisierung und Monitoring im Feld

Das Projekt "CO2 Permanent-Speicherung als Feststoff in Basalt, Teilvorhaben: Seismische und elektromagnetische Parametrisierung und Monitoring im Feld" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR).Das ACT4 Projekt PERBAS will die Technologie der dauerhaften Speicherung ( größer als 1000 Jahre) großer Mengen (20 Gt/Jahr) von CO2, mineralisiert in marinem Basaltgestein, weiterentwickeln und auf ein Technology Readiness Level (TRL) von 5 bis 6 anheben. Dazu wird eine Injektion von superkritischem CO2 in den porösen Oberbereich von alten Lavaflüssen, sedimentäre Zwischenlagen oder unterhalb von Basaltkomplexen angenommen. Zusätzlich zur permanenten Lagerung über die Mineralisierung, können etwaig nicht mineralisierte Restmengen von CO2 durch wenig poröse Sedimente, dichte Basaltlagen oder alterierte Aschelagen im abgedichteten Reservoir gehalten werden. Das deutsche Teilprojekt CO2PR konzentriert sich auf die Entwicklung einer Monitoring-Strategie für geophysikalische Fernerkundung (Seismik / EM). Dieses Ziel soll über vier Hauptaufgaben erreicht werden, die sich die Partner GEOMAR und TEEC gemäß ihrer Expertise aufteilen, wobei jede für sich einen verwertbaren Einzelbeitrag bildet. Die Aufgaben des Projektpartner GEOMAR werden im Teilprojekt CO2PR - GEOMAR erfasst: 1) Leitung des Gesamtprojektes PERBAS mit 10 Konsortialpartnern 2) Entwicklung einer neuen autonomen Plattform mit gestecktem 3-Komponenten-Seismometer. 3) Geophysikalische Vermessung eines potentiellen Speicherstandortes mit dem Ziel, die Grenzen für eine geophysikalische Fernerkundung (Seismik und Elektromagnetik) als Monitoring-Verfahren zu bestimmen.

Forschergruppe (FOR) 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE), Teilprojekt: Rekonstruktion der atmosphärischen pCO2 Konzentration und der Palaeotemperaturen der höheren Breiten im Zeitraum spätes Perm bis frühe Trias

Das Projekt "Forschergruppe (FOR) 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE), Teilprojekt: Rekonstruktion der atmosphärischen pCO2 Konzentration und der Palaeotemperaturen der höheren Breiten im Zeitraum spätes Perm bis frühe Trias" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Friedrich-Alexander-Universität Erlangen-Nürnberg, GeoZentrum Nordbayern, Lehrstuhl Geologie.Sauerstoffisotopenanalysen and Conodontenapatit belegen eine dramatische Erwärmung der niedrigen Breiten von bis 10° C vom späten Perm in die frühe Trias. Diese während fast der gesamten Frühen Trias anhaltende klimatische Erwärmung kann als Folge der Förderung der Sibirischen Trapp Basalte und daran geknüpfter Prozesse und damit als Konsequenz einer dramatisch erhöhten atmosphärischen CO2 Konzentration gesehen werden. Der Temperaturanstieg, eine hohe atmosphärische CO2 Konzentration sowie weitverbreitete anoxische Bedingungen in den Weltozeanen (Deadly Trio) könnten zu dem Massensterben im späten Perm geführt und die verzögerte Erholung der Ökosysteme nach der Perm-Trias Krise bedingt haben. Allerdings gibt es für diesen kritischen Zeitraum in der Erdgeschichte derzeit keine Proxy-Rekords für die atmosphärische CO2 Konzentration und die Temperaturentwicklung in den mittleren bis höheren Paläobreiten. Das angestrebte Forschungsprojekt hat zum Ziel, die atmosphärische CO2 Konzentration sowie die Temperaturgeschichte in den mittleren bis höheren Breiten für den Zeitabschnitt des späten Perms bis frühe Mittlere Trias zu rekonstruieren. Kohlenstoffisotopenanalysen an karbonatischen Paläoböden sollen zur Rekonstruktion der atmosphärischen CO2 Konzentrationen genutzt werden. Die Temperaturgeschichte in den mittleren bis höheren Breiten soll mittels Sauerstoffisotopenanalysen an biogenem Apatit ermittelt werden. Die erarbeiteten pCO2 und Paläotemperaturrekords sollen mit paläobiologischen Diversitätsmustern der niedrigen und hohen Breiten verglichen werden, um den Einfluss von zwei Komponenten des Deadly Trios (Temperatur, pCO2) auf die Selektivität in der Faunenentwicklung (niedrige vs. hohe Breiten) beschreiben zu können.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Magmatische Prozesse und Krusten-Akkretion an der Grenze Kruste/Mantel von schnell-spreizenden mittelozeanischen Rücken: Neue Erkenntnisse durch Bohrungen im Rahmen des ICDP Oman Drilling Project

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Magmatische Prozesse und Krusten-Akkretion an der Grenze Kruste/Mantel von schnell-spreizenden mittelozeanischen Rücken: Neue Erkenntnisse durch Bohrungen im Rahmen des ICDP Oman Drilling Project" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Christian-Albrechts-Universität zu Kiel, Sektion Geowissenschaften, Institut für Geowissenschaften.Der Oman-Ophiolith ist weltweit das größte, best-aufgeschlossenste und am besten untersuchte Stück ozeanischer Lithosphäre an Land. Im Winter 2017/18 wurde im Rahmen des ICDP Oman Drilling Projects (OmanDP) in diesem Ophiolith erfolgreich der Übergang zwischen Kruste und Mantel durchbohrt. Die beiden gewonnenen Kerne CM1 und CM2 verfügen über eine Länge von 400 bzw. 300 Metern und wurden mit einer Recovery-Rate von nahezu 100% erbohrt, wodurch sie eine einzigartige, besondere Ressource darstellen, mit hohem Wert für zukünftige petrologische und geochemische Untersuchengen. Sie präsentieren ein kohärentes, ungestörtes Profil durch die Kruste/Mantel-Übergangszone, die aus einer Abfolge von Lagigen Gabbros mit eingeschaltetem Dunit, Troktolith und Wehrlit über einer 90 m mächtigen Zone aus massiven Dunit besteht, die tektonisiertem Mantel-Peridotit auflagert. Das eingereicht Projekt fokussiert auf wissenschaftlichen Themen, die zwei unterschiedlichen methodischen Ansätzen verfolgen: (1) In einer experimentelle Studie planen wir Gleichgewichs- und Fraktionierte Kristallisation zu simulieren, um die Phasenbeziehungen und frühe Differentiation in einem parentalen, MORB-typen System zu verstehen, das zwischen trockenen (relevant für den East Pacific Rise) und wasserhaltigen Bedingungen (entspricht früher Izu-Bonin-Mariana arc-type Kruste in einem Setting der Initialisierung einer Subduktionszone) vermittelt. In einem experimentellen Sub-Projekt möchten wir die Spurenelement-Verteilung zwischen Spinel/Chromit und einer wasserhaltigen MORB-Schmelze quantifizieren, die für das Verstehen der Bildung der massiven Dunite benötigt wird. (2) Der zweite methodische Ansatz verfolgt petrologische und geochemische Untersuchungen an den Gesteinen aus den CM-Kernen, um den genauen Mechanismus zu verstehen, wie die massiven Dunite am Übergang Kruste/Mantel entstehen und nach welchem Modus sich die Differenzierung/Fraktionierung in den primitive Schmelzen direkt über dem obersten Mantel vollzieht. Die kombinierten Ergebnisse aus beiden komplementären Ansätzen werden zu einem tiefen Verständnis über die Geodynamik des Kruste/Mantel-Übergangs unter schnell-spreizender ozeanischer Kruste führen, mit genauen Details über den Aufbaumechanismus der tiefen Kruste und die dabei ablaufenden magmatischen Differenzierungs-Prozesse führen, in einem Tiefenfenster, das in rezenter ozeanischer Lithosphäre unerreichbar erscheint.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Dynamik der axialen Schmelzlinse und Akkretion der Unterkruste an schnell-spreizenden mittelozeanischen Rücken: Neue Erkenntnisse durch Bohrungen im Rahmen des ICDP Oman Drilling Project

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Dynamik der axialen Schmelzlinse und Akkretion der Unterkruste an schnell-spreizenden mittelozeanischen Rücken: Neue Erkenntnisse durch Bohrungen im Rahmen des ICDP Oman Drilling Project" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Christian-Albrechts-Universität zu Kiel, Sektion Geowissenschaften, Institut für Geowissenschaften.Im Winter 2016/17, wurden im Rahmen der ICDP-Bohr-Initiative 'Oman Drilling Project' (OmanDP) erfolgreich die untere Paläokruste des Oman-Ophioliths durchbohrt, des weltweit größten, best-aufgeschlossenen und best-untersuchtesten Fragmentes ehemaliger ozeanischer Lithosphäre an Land. Die gewonnenen Kerne verfügen über eine Länge von 400 Metern und wurden mit einer Recovery-Rate von nahezu 100% erbohrt, wodurch sie eine einzigartige, besondere Ressource darstellen, mit hohem Wert für zukünftige mineralogische und geologische Untersuchengen. Sie garantieren kohärente, ungestörte Profile durch kritische Zonen von schnell-spreizender ozeanischer Unterkruste: durch die unteren Layered Gabbros (Kern GT1), durch den Übergangsbereich zwischen Layered und Foliated Gabbros (Kern GT2) und durch die Gabbro/Dike-Übergangzsone (Kern GT3). Die erbohrten Tansekte können als Rosettastein angesehen werden, um zu verstehen, wie schnell-spreizende ozeanische Kruste, die ein Drittel unseres Planeten bedeckt, gebildet wird und wie sie durch hydrothermale Prozesse abkühlt. Das eingereicht Projekt fokussiert auf 4 wissenschaftliche Themen: (1) Das Verstehen der axialen Schmelz-Linsen-Dynamik am Übergangsbereich zwischen den Gabbros und den Sheeted Dikes; (2) Erkenntnisgewinn zum Übergang zwischen den Layered und den Foliated Gabbros in der mittleren Unterkruste; (3) die Klärung des Mechanismus, der zur Bildung von Layered Gabbros führt; (4) das Überprüfen der Hypothese, dass Amphibol-reiche kleinförmige Intrusionen und Adern in den Kernen, die im magmatischen-metamorphen Regime entstanden sind, das Produkt einer initialen hydrothermalen Kühlung der tiefen ozeanischen Kruste darstellen. Wir planen einen multi-methodischen Ansatz, in dem petrographische, petrologische, geochemische und mikro-strukturelle Untersuchungsverfahren an identischen Proben integriert werden. Die kombinierten Ergebnisse werden zu einem tiefen Verständnis darüber führen, welches die wesentlichen magmatischen und initialen hydrothermalen Prozesse sind, die zur Akkretion von schnell-spreizender ozeanischer Kruste führen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Felsische Intrusionen in von IODP erbohrten Gabbros von der Atlantis Bank am Südwestindischen Rücken: Entstehung, Metamorphose und Rolle als multifunktionale Pfade für Fluide und Massen-Transfer

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Felsische Intrusionen in von IODP erbohrten Gabbros von der Atlantis Bank am Südwestindischen Rücken: Entstehung, Metamorphose und Rolle als multifunktionale Pfade für Fluide und Massen-Transfer" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Mineralogie.Typische tiefe Kruste von langsam-spreizenden Rücken besteht aus Gabbro, der von zahllosen, cm- bis dm-mächtigen, evolvierten sog. felsischen Gängen intrudiert wird. Ihre Entstehung sowie ihre Rolle bei der hydrothermalen Alteration der Kruste ist weitgehend unbekannt. Eine IODP Expedition bohrte am Site 1473 auf der Atlantis Bank (Südwestindischer Rücken) ca. 790 m tief in massive Gabbros, die von fast 400 felsischen Gängen durchschlagen werden (ca. 1.5 Prozent des Kernes). Diese bieten die einzigartige Möglichkeit zu einer umfassenden und tiefgreifenden Untersuchung von felsischen Gänge in langsam-spreizender ozeanischer Kruste. Das Projekt untergliedert sich in 3 Themen:(1) Thema 1 zielt auf eine Untersuchung der magmatischen Entstehung der felsischen Gänge. Sind sie durch extreme Fraktionierung von MORB entstanden, oder durch partielles Aufschmelzen von Gabbro durch perkolierende hydrothermale Fluide, oder durch liquide Entmischung in einem evolvierten MORB System? Geprüft werden diese Hypothesen durch Gesamtgesteinsgeochemie in Verbindung mit geochemischer Modellierungen sowie durch eine experimentelle Simulation.(2) Thema 2 fokussiert auf die Natur des Übergangs zwischen den finalen magmatischen Prozessen und dem initialen Auftreten von hydrothermaler Aktivität in dem gerade gefrorenen Gabbro, die ebenfalls magmatische Prozesse triggern kann. Dieses Thema schließt auch die wichtige Frage ein, wie tief hydrothermale Wässer in die Detachement Fault eindringen können, und wie sich das auf die Rheologie der frisch akkreditierten Kruste auswirkt. Der Schlüssel zum Verständnis in diesem kaum untersuchten Thema im Übergang vom magmatischen zum metamorphen Regime, liegt in der sorgfältigen stofflichen Untersuchung von Hoch-Temperatur-Amphibolen, ihre inhärentes Potential zur Bestimmung von Entstehungstemperaturen, sowie auch in der genauen Bestimmung der Solidus-Temperatur bei Wassersättigung dieser speziellen, oft sehr evolvierten Gabbros vom Hole U1473.(3) Grundlage für Thema 3 ist die Beobachtung, dass die felsischen Gänge immer signifikant stärker als das gabbroide Nebengestein alteriert sind, und dass die metamorphen Mineral-Assoziationen in den felsischen Gängen typischerweise wechselnde metamorphe Bedingungen anzeigen, z.B. von höchsten Temperaturen nahe am Gesteins-Solidus bis hinunter zu sehr niedrigen Temperaturen (Sub-Grünschieferfazies). Diese Beobachtungen werfen die Frage nach der Rolle der felsischen Gänge für die metamorphe Entwicklung bei der hydrothermalen Abkühlung der Kruste auf, und nach der Menge der Fluide, die über solche Pfade umgesetzt wurden. Der methodische Ansatz hierfür ist die sorgfältige Analyse von fluid-haltigen Mineralen (Amphibole, Apatit), die genaue Erfassung der Gleichgewichtstemperatur über Geothermometrie in Kombination mit der Analyse von lokalen metamorphen Gleichgewichten, Abschätzung des Fluxes an meerwasser-abgeleiteten Fluiden über Sr- und Sauerstoff-Isotopie, sowie thermodynamische Berechnungen.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Bildung von Rhyolithen und Bedingungen in rhyolitischen Magmakammern der 'Snake River Plain' Provinz, USA.

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Bildung von Rhyolithen und Bedingungen in rhyolitischen Magmakammern der 'Snake River Plain' Provinz, USA." wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Mineralogie.Die Snake River Plain-Yellowstone Provinz (SRP) weist ein einzigartiges Vorkommen von bimodalem Magmatismus auf (Basalte-Rhyolithe). Die Intrusion von Basalten in der tiefen Kruste ist mit einem Recycling der kontinentalen Kruste verbunden, der zur Bildung von Rhyolithen geführt hat. Mehrere Modelle werden zurzeit für die Bildungsprozesse der Rhyolithe erwähnt (u.a., Fraktionierung von Basalten, Assimilation, Teilschmelzprozesse von Krustenmaterial). Die Modelle sind jedoch nicht experimentell getestet worden und bleiben qualitativ. In diesem Projekt soll untersucht werden, in wie fern Rhyolithe aus Teilschmelzprozessen von Krustenmaterial entstehen können. Hochdruckexperimente werden durchgeführt, um Teilschmelzprozesse in typischen Ausgangsgesteinen zu simulieren. Zwei Zusammensetzungs-Typen, die öfters als Quelle vorgeschlagen wurden, werden untersucht: hydrothermal alterierte Rhyolithe und basaltische Gesteine. Die geochemische Zusammensetzung (Hauptelemente und Spurenelemente) der experimentellen Schmelzen werden mit natürlichen Gläsern von ICDP Proben und von weiteren eruptiven Einheiten verglichen. Die Zusammensetzung der natürlichen Gläser wird weiterhin benutzt werden, um die Tiefe der Magma-Reservoire mit Hilfe eines neu kalibrierten Barometers zu bestimmen. Proben von einigen eruptiven Einheiten (u.a., aus Kimberley and Sugar City Bohrungen) werden ausgewählt um zu testen, ob einzelne Eruptionen aus mehreren Magma-Reservoiren gespeist werden. Die experimentelle Arbeit und die Untersuchung der natürlichen Proben (ICDP Bohrungen und SRP) werden hilfreich sein um die Entstehungsprozesse der Rhyolithe zu klären (Quelle, Bedingungen). Weiterhin wird die Arbeit einen wichtigen Beitrag leisten, um die Entwicklung der Tiefe und der Temperatur der rhyolitischen Magmakammer seit dem Beginn der vulkanischen Aktivität vor 16 Millionen Jahren nachzuvollziehen.

1 2 3 4 510 11 12