s/bioconversion/Biokonversion/gi
Hintergrund: Dieses Projekt begleitet die Umgestaltung eines Fichtenwald-Reinbestandes im Nationalpark Eifel vom derzeitigen Ist-Zustand über eine Baumentnahme hin zu einem standortgerechten Laubmischwald. Der Stoffhaushalt (Kohlenstoff, Lösungsfracht, Schwebfracht, Bachgeschiebe und Wasser) sowie die ihn beeinflussenden Faktoren (Klima, Boden, Vegetation, Landnutzung) werden genauer untersucht. Erstmalig werden für dieses Gebiet im Rahmen dieses Projektes CO2-Kreisläufe quantifiziert und Maßnahmen zur Kohlenstoffreduktion beschrieben (durch das Institut für Chemie und Dynamik der Geosphäre - Institut 4: Agrosphäre (ICG-4)). Zudem sollen zu erwartende Veränderungen auf Stoff- und Wasserkreisläufe erfasst werden. Bestehende Datenlücken für die Mittelgebirge werden damit geschlossen (durch den Lehrstuhl für Physische Geographie und Geoökologie (PGG)). Fragestellungen: Aufgabe des Projektes wird sein, präzise Informationen zum Stoff- (u.a. Kohlendioxid, Nitrat, Phosphat, Ammonium) und Wasserkreislauf zu erhalten sowie die Bedeutung standortrelevanter Parameter (Klima, Boden, Vegetation, Landnutzung) bei der Entstehung eines standorttypischen Laubmischwaldes zu erfassen. Während der Umwandlung eines Fichtenreinbestandes zu einem Laubwald - mit Vergleichsuntersuchungen im Freiland (Wiese) - sollen verschiedene Stadien der Umwandlung untersucht werden. Die Ergebnisse werden neue und vor allem quantifizierbare Erkenntnisse zum CO2-Haushalt sowie zum Wasser- und Stoffkreislauf im Ökosystem Wald liefern; Grundbausteine für eine nachhaltige Landnutzung und der Reduzierung atmosphärischen CO2. Von der Arbeitsgruppe PGG und dem ICG-4 bearbeitete Fragestellungen: - Wie wirken sich Landnutzungsänderungen auf Stoff- und Wasserhaushalt aus? - Welche Auswirkungen hat der Klimawandel auf Wasser, Boden und Vegetation? - Wie wirken sich Rückkopplungsprozesse auf terrestrische Systeme aus? - Wie wirken sich großräumige Eingriffe aus? Ziele: Ziele des Lehrstuhls für Physische Geographie und Geoökologie sind insbesondere, in Kooperation mit dem ICG-4 Veränderungen des Kohlenstoff- und Wasserhaushaltes sowie der Nährstoffkreisläufe in Erwartung des absehbaren Klimawandels und der Maßnahmen zur CO2-Reduktion zu erfassen. Gesicherte Erkenntnisse in Bezug auf den Wasserhaushalt und die ihn beeinflussenden Größen in Mittelgebirgsräumen liegen bisher kaum vor. Hier schließt das Projekt eine Datenlücke. Die Rolle der Vegetation sowie der Böden (insbesondere die bodenbildenden periglazialen Deckschichten) sind hier von Bedeutung, da Prozesse der Stoffakkumulation, -umwandlung und -transport von diesen Parametern stark abhängig sind. Deckschichten haben mit ihren Mächtigkeiten und Ausprägungen einen starken Einfluss auf Sickerwasser, Grundwasserneubildung, Retention und Oberflächenabfluss. Zudem ist für die Kooperation mit dem ICG-4 die Betrachtung des Bodenwasserhaushaltes unerlässlich, um den CO2-Vorrat im Boden zu analysieren. Die Retentionskapazitäten der Böden werden präzi
Pharmakokinetische Eigenschaften, Verteilung und Ausmass der Biotransformation von 2,2',4,5'-Tetrachlorbiphenyl im Huhn wurden bestimmt. Das die Metaboliten dieses Chlorbiphenyls ueber Kot und Eier ausgeschieden werden, soll nach einer Neusynthese der 14C-markierten Substanz ((14C)-TCB) diese wiederum an Huehner verabreicht werden. Es ist geplant, ihre Metaboliten aus Kot und Eiern zu isolieren und ihre Struktur aufzuklaeren. Weiterhin soll geprueft werden, ob das mikrosomale Enzymsystem der Huehnerleber sowie isolierte Huehnerhepatocyten (14C)-TCB biotransformieren und welche Metaboliten gebildet werden. Im Rahmen dieser Experimente soll auch geklaert werden, ob (14C)-TCB an DNA und RNA der Huehnerleber bindet. Kann dies im in-vitro Experiment gezeigt werden, soll der entsprechende in-vivo Versuch durchgefuehrt werden, indem DNA und RNA aus der Leber von Huehnern isoliert werden, denen (14C)-TCB oral verabreicht wurde.
Beim mikrobiellen Umsatz von organischen Verbindungen wird ein beträchtlicher Anteil des Kohlenstoffs zunächst zum Aufbau von Biomasse durch Bakterien genutzt. Diese Biomasse unterliegt nach ihrem Absterben wieder einem Abbau durch andere Mikroorganismen. In diesem Prozess werden Fragmente der abgestorbenen Zellen entweder selbst wieder zum Substrat für andere Organismen oder direkt in der Bodenmatrix festgelegt. Damit tragen sie substanziell zur Bildung der organischen Bodensubstanz (SOM) bei. Im Rahmen der geplanten Arbeiten sollen vorwiegend durch Markierungsexperimente mit stabilen und radioaktiven Isotopen die mikrobiellen Umsatzraten und die Bildung von Huminstoffen aus bakterieller Biomasse und fraktionierten Zellbestandteilen wie auch aus mikrobiellen Mineralisationsprodukten wie CO2 und NH4 in Modellböden des Schwerpunktprogrammes detailliert untersucht werden. Dazu wird die Transformation isotopisch markierter Biomassebestandteile (14C; 13C; 15N) in Bodenbioreaktoren untersucht. Die festgelegten und umgewandelten Produkte der markierten Biomasse sollen in den verschiedenen Partikel- und Huminstofffraktionen des Bodens bilanziert und mit isotopenchemischen und strukturchemischen Methoden charakterisiert werden. Damit können der stoffliche Beitrag der Biomasse an der Bildung von Huminstoffen im Boden bilanziert und Konversionsfaktoren sowie Raten für die Stoffverteilung abgeschätzt werden. Ergebnisse aus ersten Versuchen lassen zudem auf einen signifikanten Einbau von Kohlenstoff aus CO2 in die SOM schließen. Daraus könnte sich eine Neubewertung von Tracerexperimenten zur Bildung von gebundene Resten aus Xenobiotika ergeben. Im zweiten Schritt sollen Methoden zur Ermittlung der Struktur und Funktionalität der festgelegten Biopolymere entwickelt werden. Besonderes Augenmerk wird auf die Festlegung von Zellwandbestandteilen, Strukturproteinen und Nukleinsäuren gelegt.
Organische Spurenstoffe (TrOCs) sind eine vielfältige Gruppe von Chemikalien wie Arzneimittel, Pestizide, Körperpflegeprodukte. In vielen Tieflandbächen, in die gereinigtes Abwasser eingeleitet wird, treten hohe TrOC-Belastungen auf. Diese Bäche sind oft durch Feinsedimente gekennzeichnet, in denen Wasserströmung über kleine Bettformen Druckunterschiede erzeugt, so dass Wasser ins, im und aus dem Bachbett fließt (hyporheischer Austausch). Biotransformations- und Sorptionsprozesse verringern die TrOC-Konzentrationen im Porenwasser stärker als im Oberflächenwasser. Bei vielen Verbindungen sind diese Prozesse redoxabhängig, d.h. die Verweildauer des Wassers in bestimmten Redoxzonen des Betts ist für die TrOC-Abnahme entscheidend. Bisherige Forschungen zu Fließgewässern haben sich fast ausschließlich auf stationäre Sohlformen konzentriert, obwohl Sohlformen in Fließgewässern häufig in Bewegung sind. Ihre Bewegung beeinflusst Fließwege, Fluxe und Redoxzonen im Sediment. Das Projekt zielt darauf, die Auswirkungen von sich bewegenden Sohlformen auf die TrOC-Abnahme zu untersuchen. Außerdem soll erforscht werden, wie dynamische Fließregime die Flussbettmobilität und die TrOC-Abnahme beeinflussen. Dazu werden Felduntersuchungen mit Fließrinnenexperimenten und Modellierungen kombiniert. Die Felduntersuchungen erfolgen in einem kleinen Fließgewässer mit sandigem Flussbett und hoher Spurenstoffbelastung (gereinigtes Abwasser). Der Versuchsaufbau ermöglicht eine Variation der Fließgeschwindigkeit und damit der Bewegung der Sohlformen. Planare 2D-Optoden erlauben eine Identifikation der Redoxzonierung und damit eine redoxspezifische Beprobung der TrOC-Konzentrationen. Experimente in einer einzigartigen Fließrinne an der Ben-Gurion Universität erlauben eine systematische Variation der Sohlformgeschwindigkeit, ein dynamisches Abflussregime und geben so einen Einblick in die Schlüsselprozesse, die die TrOC-Abnahme kontrollieren. Nach der Zugabe der TrOC werden Zeitreihen ihrer Abnahme im Oberflächenwasser gemessen. Die Redoxzonen im Sediment werden durch planare 2D-Optoden identifiziert und beprobt. Um die Ergebnisse zu verallgemeinern, wird ein reaktives Spurenstoff-Transportmodell für beliebig geformte, instationäre Bettformen entwickelt. Dabei wird auf Basis vorhandener Fließrinnen-Datensätze maschinelles Lernen zur Vorhersage der Fluxverteilungen im Gewässerbett eingesetzt. Strömungs- und Reaktionsparameter werden anhand von Fließgewässer- und Erpe-Datensätzen kalibriert und dann wird eine Monte-Carlo / Maschinenlernen-Studie durchgeführt, um die Reaktionsrate des Gesamtsystems anhand der beobachteten Parameter vorherzusagen. Durch die Verbesserung des mechanistischen Verständnisses der Spurenstoffabnahme in Fließgewässern soll diese Forschung die langfristigen Vorhersagen über den Verbleib von TrOCs in Fließgewässern verbessern und Sanierungsstrategien zur Verbesserung der Wasserqualität in Gewässersystemen vorantreiben.
Wasserlösliche Polymere (WSPs) werden in großen Mengen produziert (1.000-1.000.000 Tonnen pro Jahr, je nach Polymer) und haben zahlreiche Anwendungen, die einen Eintrag in die aquatische Umwelt zur Folge haben können. In den wenigen Fällen in denen Konzentrationen zumindest abgeschätzt werden konnten wurde je nach Polymer und Nähe zu einer Quelle von Konzentrationen im µg/L bis mg/L Bereich berichtet. Dennoch sind zu wenige Informationen zu ihrem Vorkommen und Verhalten in der aquatischen Umwelt verfügbar, um eine Bewertung ihrer Umweltrelevanz vornehmen zu können. Dies liegt zum einen daran, dass spurenanalytische Methoden für WSPs in komplexen Umweltmatrizes noch nicht etabliert sind und zum anderen daran, dass die in Studien zum Abbau verwendeten analytischen Methoden oft nur die Betrachtung eines Primärabbaus oder des Grades der Mineralisierung zuließen. In vielen Fällen fanden Transformationsprodukte wenig oder keine Beachtung. Für andere WSPs fehlen solche Studien noch komplett. Auf Basis des Literaturstandes untersucht PolyAqua das Umweltvorkommen und Umweltverhalten (Biotransformation, gebildete Transformationsprodukte und Sorption) von 5 ausgewählten Polymeren (Polyethyleneoxid - PEO, Polyvinylpyrrolidone - PVP, Polydiallyldimethylammonium chlorid - PolyDADMAC, Polyacrylsäure - PAA und Polyacrylamid - PAM) in drei Arbeitspaketen. Im Arbeitspaket 1 werden spurenanalytische Methoden für WSPs entwickelt und somit der Grundstein für die weitere Untersuchung gelegt. Es werden verschiedene analytische Methoden betrachtet, die bereits vereinzelt für WSPs angewendet wurden oder auf die Übertragbarkeit von Mikro- oder Nanoplastik auf WSPs schließen lassen. In Arbeitspaket 2 werden die Biotransformation und das Sorptionsverhalten der ausgewählten WSPs in Laborstudien untersucht. Die vorrausgegangenen Arbeiten werden in Arbeitspaket 3 auf reale Systeme übertragen (Oberflächenwässer und potentielle Quellen wie kommunale Kläranlagen). In diesem Arbeitspaket wird ein Umweltmonitoring für die ausgewählten WSPs und deren in Arbeitspaket 2 identifizierten Transformationsprodukte durchgeführt das nicht nur die wässrige Phase, sondern auch feste Phasen wie Sediment, Schwebstoffe und Klärschlamm untersucht. Dieses Monitoring dient zur Bestätigung der in Arbeitspaket 2 erzielten Ergebnisse in realen Systemen. Die kombinierten Ergebnisse zeigen, in welchen Mengen WSPs in die aquatische Umwelt eingeleitet werden. Zudem verdeutlichen sie, wie sich die WSPs zwischen verschiedenen Phasen verteilen und welche Rolle Transformationsprozesse für ihr Umweltverhalten spielen.
| Origin | Count |
|---|---|
| Bund | 296 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 285 |
| Text | 3 |
| unbekannt | 8 |
| License | Count |
|---|---|
| geschlossen | 11 |
| offen | 289 |
| Language | Count |
|---|---|
| Deutsch | 271 |
| Englisch | 65 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 1 |
| Datei | 3 |
| Dokument | 2 |
| Keine | 144 |
| Webseite | 151 |
| Topic | Count |
|---|---|
| Boden | 227 |
| Lebewesen und Lebensräume | 300 |
| Luft | 132 |
| Mensch und Umwelt | 300 |
| Wasser | 141 |
| Weitere | 298 |