API src

Found 5 results.

Experimental data of analogue models addressing the influence of oblique convergence and inheritance on sliver tectonics

This dataset includes video sequences depicting the evolution in map view and lateral view of 7 analogue experiments studying mantle-scale subduction systems. The experiments are performed under a natural gravity field and are designed to understand the role of convergence obliquity on upper plate deformation and partitioning, with a particular emphasis on the role played by lithospheric inherited structures on the development of sliver tectonics. All experiments were performed at the Laboratory of Tectonic modelling of the University of Rennes 1 (France). The experimental set-up corresponds to a lithosphere and sub-lithospheric upper mantle system. The lithospheric plates are simulated with PDMS silicone (Polydimethylsiloxane Silicone) with different viscosities and densities, and the upper mantle with glucose syrup. In particular, for the overriding plate, we simulate the presence of a weaker volcanic arc that can eventually be decoupled from the forearc by a pre-existing discontinuity. The materials are placed into a Plexiglas tank, where the impermeable bottom of the tank represents the 660 km discontinuity. The subduction is initiated by manually forcing the slab into the mantle and it then evolves under the combined effects of internal buoyancy forces (slab pull) and external boundary forces. The subducting plate is pushed toward the trench at a constant velocity of 1.5 cm/min while the overriding plate is maintained fixed during the duration of the experiments. The evolution of the experiments is monitored by DSLR cameras (24 Mpx) taking pictures every 30 seconds at the top and on one side of the experiments. Pictures are then assembled into video-sequences. The scale bar, with black & white rectangles corresponds to 10 cm. The set of experiments consists of one reference model (MODEL-01) with orthogonal convergence, and six models with oblique convergence (Table 1). Among these models, three do not embed a pre-existing lithospheric discontinuity in the overriding plate (MODEL-02, MODEL-03, and MODEL-04) while the three other (MODEL-05, MODEL-06, and MODEL-07) have such a discontinuity. For the models with oblique convergence, we vary the angle between the convergence direction and the trench from 80° (MODEL-02 and MODEL-05) to 60° (MODEL-03 and MODEL-06) and 50° (MODEL-04 and MODEL-07). For details on the experimental set-up, and interpretation of the results, please refer to Suárez et al. (submitted to Tectonophysics) to which these data are supplementary material.

PIV and topographic analysis data from analogue experiments involving 3D structural inheritance and multiphase rifting

This data set includes videos depicting the surface evolution (time-lapse photographs and Particle Image Velocimetry or PIV analysis) of 38 analogue models, in five model series (A-E), simulating rift tectonics. In these experiments we examined the influence of differently oriented mantle and crustal weaknesses on rift system development during multiphase rifting (i.e. rifting involving changing divergence directions or -rates) using brittle-viscous set-ups. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). The brittle and viscous layers, representing the upper an lower crust, were 3 cm and 1 cm thick, respectively, whereas a mantle weakness was simulated using the edge of a moving basal plate (a velocity discontinuity or VD). Crustal weaknesses were simulated using “seeds” (ridges of viscous material at the base of the brittle layers that locally weaken these brittle layers). The divergence rate for the Model A reference models was 20 mm/h so that the model duration of 2:30 h yielded a total divergence of 5 cm (so that e = 17%, given an initial model width of ca. 30 cm). Multiphase rifting model series B and C involved both a slow (10 mm/h) and fast (100 mm/h) rifting phase of 2.5 cm divergence each, for a total of 5 cm of divergence over a 2:45 h period. Multiphase rifting models series D and E had the same divergence rates (20 mm/h) as the Series A reference models, but involved both an orthogonal (α = 0˚) and oblique rifting (α = 30˚) phase of 2.5 cm divergence each, for a total of 5 cm of divergence over a 2:30 h period. In our models the divergence obliquity angle α was defined as the angle between the normal to the central model axis and the direction of divergence. The orientation and arrangements of the simulated mantle and crustal weaknesses is defined by angle θ (defined as the direction of the weakness with respect to the model axis. An overview of model parameters is provided in Table 1, and detailed descriptions of the model set-up and results, as well as the monitoring techniques can be found in Zwaan et al. (2021).

Images and videos of analogue centrifuge models exploring marginal flexure during rifting in Afar, East Africa

This data set includes images and videos depicting the evolution of deformation and topography of 17 analogue experiments c passive margin development, to better understand the ongoing tectonics along the western margin of Afar, East Africa. The tectonic background that forms the basis for the experimental design is found in Zwaan et al. 2019 and 2020a-b, and references therein. The experiments, in an enhanced gravity field in a large-capacity centrifuge, examined the influence of brittle layer thickness, strength contrast, syn-rift sedimentation and oblique extension on a brittle-viscous system with a strong and weak viscous domain. All experiments were performed at the Tectonic Modelling Laboratory of of the Istituto di Geoscience e Georisorse - Consiglio Nazionale delle Ricerche (CNR-IGG) and of the Earth Sciences Department of the University of Florence (CNR/UF). The brittle layer (sand) thickness ranged between 6 and 20 mm, the underlying viscous layer, split in a competent and weak domain (both viscous mixtures), was always 10 mm thick. Asymmetric extension was applied by removing a 1.5 mm thick spacer at the side of the model at every time step, allowing the analogue materials to spread when enhanced gravity was applied during a centrifuge run. Differential stretching of the viscous material creates flexure and faulting in the overlying brittle layer. Total extension amounted to 10.5 mm over 7 intervals for Series 1 models that aimed at understanding generic passive margin development in a generic orthogonal extension setting, whereas up to 16.5 mm of extension was applied for the additional Series 2 models aiming at reproducing the tectonic phases in Afar. In models involving sedimentation, sand was filled in at time steps 2, 4 and 6 (i.e. after 3, 6 and 9 mm of extension). Detailed descriptions of the experiments, monitoring techniques and tectonic interpretation of the model results are presented in Zwaan et al. (2020c) to which these data are supplementary.

4D X-Ray CT data and surface view videos of a systematic comparison of experimental set-ups for modelling extensional tectonics

This data set includes 40 videos (+ 1 image) depicting the surface evolution of 39 experiments on crustal extension, as well as 4D CT imagery (figures and videos) of 6 of these experiments. The experiments examined the influence of the method for driving extension (foam base, rubber base, plate base or conveyor base) for localization of deformation in overlying layers of brittle-only and brittle-viscous materials representing the earth’s crust. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern. Detailed descriptions of the experiments and monitoring techniques can be found in Zwaan et al. (2019) to which these data are supplementary material.All experiments were monitored with top view photographs (SLR camera Nikon D-100 6.1 MPx). The photograph time steps depend on the applied extension velocity, but are generally 1 or 2 min. Six experiments were also monitored with an X-Ray computed tomography technique using a 64 slice Siemens Somatom Definition AS X-ray CT-scanner (Zwaan et al., 2016) with varying time intervals (5-30 min). CT-data was analyzed with the software OsiriX (Pixmeo SARL).

Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena

This dataset provides friction data from ring-shear tests (RST) for two types of foam glass beads and a mixture of foam glass beads with quartz sand (“G12”; Rosenau et al., 2019). These materials have been used in analogue experiments in Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and in the Analogue laboratory of the Institute of Geosciences of the Friedrich Schiller University of Jena (FSU Jena). The materials have been characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak friction coefficients µP of all tested materials range between 0.70 and 0.75, dynamic friction coefficients µD between 0.52 and 0.55 and reactivation friction coefficients µR between 0.60 and 0.62. Peak cohesions CP of all materials are negative indicating that they are cohesionless. All materials show a minor rate-weakening of ~1% per ten-fold change in shear velocity v.Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.

1