Bodenproben (z.B. Klaerschlamm) und biologische Proben (z.B. Algen, Pilze, Rinderleber) werden mit Hilfe intensiver, hochenergetischer Gamma-Strahlung aktiviert. Der Elementnachweis erfolgt ueber eine Identifizerung der emittierten charakteristischen Gamma-Srahlung der entstandenen radioaktiven Isotope.
Piloten und FlugbegleiterInnen gehoeren zu den Personen, die einer hohen Strahlenbelastung am Arbeitsplatz ausgesetzt sind. Die kosmische Strahlung in Flughoehe besteht ausschliesslich aus Sekundaerstrahlung (hauptsaechlich Neutronen und Gammastrahlung), die in Wechselwirkung von primaeren Teilchen mit den Atomen der Lufthuelle erzeugt wird. Die Exposition des Flugpersonals ist zudem abhaengig von der Flughoehe, der geomagnetischen Breite und der solaren Aktivitaet. Aufgrund der Komplexitaet des kosmischen Strahlenfeldes ist allerdings der Umfang der Exposition schwer zu bestimmen, und physikalische Messungen geben keinerlei Hinweise auf die biologische Wirksamkeit dieser Strahlung. Ueber Chromosomenanalysen in den peripheren Lymphozyten des menschlichen Blutes konnte in einer Pilotstudie an Personal aus dem Interkontinentalverkehr eine hochsignifikant erhoehte Strahlenbelastung festgestellt werden. Die Chromosomenanalyse eines weiteren Untersuchungskollektivs, das aus einer Gruppe von Concordepiloten besteht, steht kurz vor dem Abschluss. Ergebnisse aus strahlenbiologischen Experimenten im CERN, Genf, belegten eine sehr hohe biologische Wirksamkeit der kosmischen Strahlung im Niederdosisbereich. Die Resultate dieser Versuchsreihe (in-vitro) sollen mit den Ergebnissen aus den in-vivo Ansaetzen verglichen und im Hinblick auf die biologisch Wirksamkeit kleiner Dosen von Neutronen bewertet werden. Die Ergebnisse sollen der Einfuehrung des Strahlenschutzes fuer das Flugpersonal dienen.
Um die Genauigkeit von schnelleren Rechenmethoden (Point-Kernel) zu ueberpruefen, werden an vorgegeben einfachen Haustypen Monte-Carlo Berechnungen zur Ermittlung der Gamma-Strahlen-Felder durchgefuehrt. Es wird eine auessere Kontamination der Haeuser und des umgebenen Erdreichs angenommen.
Welcher Zusammenhang besteht zwischen Strahlung und Krebs (unterschiedliche Dosen)? Ionisierende Strahlung kann Krebs bzw. Leukämie auslösen. Zu ionisierender Strahlung zählt Strahlung , die von radioaktiven Stoffen ausgeht, aber auch Röntgenstrahlung . Ionisierende Strahlung kann Schäden am Erbgut der Zelle verursachen. Vermehren sich Zellen, deren Erbgut etwa durch ionisierende Strahlung verändert wurde, kann in der Folge Krebs entstehen. Ob eine Krebserkrankung auf eine Strahlenexposition zurückzuführen ist oder ob sie einen anderen Ursprung hatte, lässt sich für eine einzelne Person nicht ermitteln.Für eine größere Population lässt sich im Nachhinein abschätzen, welcher Anteil der Krebserkrankungen auf die Strahlenexposition zurückzuführen ist. Mit zunehmender Strahlendosis steigt das Krebsrisiko. Das strahlenbedingte Krebsrisiko ist neben der Höhe der Dosis auch abhängig von der Art der Strahlung ( z. B. Alpha-, Beta- oder Gammastrahlung ). Außerdem spielt unter anderem das Alter eine Rolle. Für Erwachsene ist ein Anstieg des Krebsrisikos ab einer Dosis von etwa 100 Millisievert ( mSv ) in Beobachtungsstudien am Menschen gut belegt. Auch bei niedrigeren Dosen kann aber ein Anstieg des Krebsrisikos nicht ausgeschlossen werden. In allen Organen kann strahlenbedingter Krebs entstehen. Besonders strahlenempfindlich sind z.B. das blutbildende System, die Lunge, die weibliche Brust oder der Verdauungstrakt. Eine Dosis von 100 Millisievert ( mSv ) erhöht das lebenslange Krebsrisiko um etwa 1 Prozent, also im Vergleich zum spontanen lebenslangen Krebsrisiko von etwa 47 Prozent auf 48 Prozent. Wer im Kindesalter einer erhöhten Strahlenbelastung ausgesetzt ist, hat vor allem ein erhöhtes Risiko , an Leukämie und bei Aufnahme von radioaktivem Jod an Schilddrüsenkrebs zu erkranken.
Natürliche Radionuklide in Baumaterialien Bei der Verwendung von Gesteinen und Erden zu Bauzwecken können in diesen Materialien enthaltene oder aus ihnen freigesetzte Radionuklide zu einer Strahlenexposition der Bevölkerung führen. Der Mittelwert der durch die natürlichen Radionuklide in den Baustoffen bedingten Gamma-Ortsdosisleistung ( ODL ) in Gebäuden beträgt rund 80 Nanosievert pro Stunde. Werte der ODL über 200 Nanosievert pro Stunde sind selten. Die in Deutschland in großen Mengen traditionell verwendeten Baustoffe sind im Allgemeinen nicht die Ursache für erhöhte Strahlenexpositionen durch Radon in Gebäuden. Naturwerksteine können in allen Bereichen des Bauens im Hausinneren und im Freien eingesetzt werden Bei der Verwendung von Gesteinen und Erden zu Bauzwecken können in diesen Materialien enthaltene oder aus ihnen freigesetzte Radionuklide zu einer Strahlenexposition der Bevölkerung führen. Von besonderer Bedeutung sind dabei die Radionuklide aus den radioaktiven Zerfallsreihen von Uran -238, Thorium-232 sowie Kalium-40. Ursachen der durch natürliche Radionuklide in Baustoffen verursachten Strahlenexposition beim Aufenthalt in Gebäuden sind die von den Radionukliden in den Baumaterialien ausgehende, von außen auf den Körper wirkende Gammastrahlung sowie die Inhalation des aus den Baumaterialien in die Räume freigesetzten Gases Radon und seiner Zerfallsprodukte. Untersuchung und Bewertung Seit über 40 Jahren werden in Deutschland Untersuchungen und Bewertungen der natürlichen Radioaktivität in Baustoffen und Bauprodukten durchgeführt. Daher liegen im Bundesamt für Strahlenschutz ( BfS ) von mehr als 1.500 Proben von Natursteinen, Baustoffen und mineralischen Reststoffen Daten der spezifischen Aktivitäten der relevanten Radionuklide vor. Aktualisierte Untersuchungen an 120 Baustoffproben aus dem Jahr 2007 sind im BfS-Bericht BfS-SW-14/12 veröffentlicht worden. An einer großen Anzahl von Proben wurde zusätzlich die Radonfreisetzung bestimmt. Spezifische Aktivitäten natürlicher Radionuklide in Natursteinen, Baustoffen und Reststoffen (angegeben sind Mittelwert und Bereich (in Klammern) in Becquerel pro Kilogramm) Material Radium-226 Thorium-232 Kalium-40 Granit 100 (30 - 500) 120 (17 - 311) 1.000 (600 - 4.000) Gneis 75 (50 - 157) 43 (22 - 50) 900 (830 - 1.500) Diabas 16 (10 - 25) 8 (4 - 12) 170 (100 - 210) Basalt 26 (6 - 36) 29 (9 - 37) 270 (190 - 380) Granulit 10 (4 - 16) 6 (2 - 11) 360 (9 - 730) Kies, Sand, Kiessand 15 (1 - 39) 16 (1 - 64) 380 (3 - 1.200) Natürlicher Gips, Anhydrit 10 (2 - 70) < 5 (2 - 100) 60 (7 - 200) Tuff, Bims 100 (< 20 - 200) 100 (30 - 300) 1.000 (500 - 2.000) Ton, Lehm < 40 (< 20 - 90) 60 (18 - 200) 1.000 (300 - 2.000) Ziegel, Klinker 50 (10 - 200) 52 (12 - 200) 700 (100 - 2.000) Beton 30 (7 - 92) 23 (4 - 71) 450 (50 - 1.300) Kalksandstein, Porenbeton 15 (6 - 80) 10 (1 - 60) 200 (40 - 800) Schlacke aus Mansfelder Kupferschiefer 1.500 (860 - 2.100) 48 (18 - 78) 520 (300 - 730) Gips aus der Rauchgasentschwefelung 20 (< 20 - 70) < 20 < 20 Braunkohlenfilterasche 82 (4 - 200) 51 (6 - 150) 147 (12 - 610) Der Mittelwert der durch die natürlichen Radionuklide in den Bauprodukten bedingten Gamma-Ortsdosisleistung ( ODL ) in Gebäuden beträgt rund 80 Nanosievert pro Stunde. Werte der ODL über 200 Nanosievert pro Stunde sind selten. Radon Gesetzliche Regelungen Naturwerksteine Radon Radon von besonderer Bedeutung Das durch radioaktiven Zerfall aus Radium-226 entstehende gasförmige Radon-222 ist aus der Sicht des Strahlenschutzes von besonderem Interesse. Nach aktuellen Erkenntnissen wird in Deutschland ein signifikanter Anteil der Lungenkrebserkrankungen in der Bevölkerung auf die Belastung mit Radon und seinen Zerfallsprodukten in Gebäuden zurückgeführt. Die Radonfreisetzung aus Bauprodukten wird durch die spezifische Aktivität des Radium-226 und andere, den Radontransport bestimmende Materialeigenschaften (zum Beispiel Porosität ) bestimmt. Untersuchungen zeigen, dass die in Deutschland in großen Mengen traditionell verwendeten Baustoffe Beton, Ziegel, Porenbeton und Kalksandstein im Allgemeinen nicht die Ursache für Überschreitungen des vom BfS empfohlenen Jahresmittelwertes der Radonkonzentration in Aufenthaltsbereichen sind. Dieser soll 100 Becquerel pro Kubikmeter nicht überschreiten. Der Beitrag des Radon-222 aus Bauprodukten zur Radonkonzentration in Wohnräumen liegt bei maximal 70 Becquerel pro Kubikmeter. Bei aktuell im Handel erhältlichen Bauprodukten wurden Werte deutlich unter 20 Becquerel pro Kubikmeter bestimmt. Höhere Radonkonzentrationen bei einzelnen Baumaterialien Freisetzungsraten von Radon , die höhere Konzentrationen im Innenraum zur Folge haben können, wurden in Deutschland vereinzelt an Rückständen der Verbrennung von Kohlen mit erhöhter Uran-/Radiumkonzentration (früher unter der Bezeichnung "Kohleschlacke" regional als Füllung von Geschossdecken verwendet) und in Ausnahmefällen an Natursteinen mit erhöhten spezifischen Aktivitäten des Radium-226 gemessen. Erhöhte Radonkonzentrationen in Häusern aus Mansfelder Kupferschlacke wurden trotz der vergleichsweise hohen spezifischen Aktivität des Radium-226 in diesem Material nicht ermittelt. In einigen Ländern wurden höhere Radonkonzentrationen in Häusern festgestellt, in denen so genannte Chemiegipse (Rückstände der Phosphoritverarbeitung) eingesetzt wurden, sowie bei Leichtbetonen, die unter Verwendung von Alaunschiefer hergestellt wurden. Vereinzelt findet man auch überdurchschnittliche Radonkonzentrationen in den traditionellen Gebieten des Bergbaus, wenn Abraum oder Reststoffe der Erzverarbeitung mit erhöhter Radiumkonzentration als Baumaterial, als Beton- oder Mörtelzuschlagstoff oder zur Fundamentierung oder als Füllmaterial beim Hausbau verwendet wurden. Thoron Nach derzeitigem Kenntnisstand wurden in Deutschland keine Materialien zu Bauzwecken verwendet, die infolge erhöhter Thoriumkonzentrationen zu aus der Sicht des Strahlenschutzes relevanten Expositionen durch das Gas Radon-220 (Thoron) und seiner Zerfallsprodukte in Räumen führen könnten. Die Möglichkeit, dass ungebrannter Lehm als Baustoff in Einzelfällen zu erhöhten Thoronwerten in der Raumluft führen kann, lässt sich jedoch nicht gänzlich ausschließen. Weiterführende Informationen zum Thema Lehm und Thoron finden Sie im Artikel Lehm als Baumaterial . Gesetzliche Regelungen Gesetzliche Begrenzung bei Baustoffen In einigen Rückständen aus industriellen Prozessen reichern sich die natürlichen radioaktiven Stoffe an. Bei Verwendung dieser Rückstände, zum Beispiel ihrem Einsatz als Sekundärrohstoff im Bauwesen, sind erhöhte Strahlenexpositionen der Bevölkerung nicht auszuschließen. 1. Strahlenschutzrecht Zur Begrenzung der effektiven Dosis aus der äußeren Exposition für Einzelpersonen der Bevölkerung in Aufenthaltsräumen wurde im Strahlenschutzgesetz ( StrlSchG ) ein Referenzwert von 1 Millisievert pro Jahr festgelegt, der zusätzlich zur effektiven Dosis im Freien gilt. Ein Referenzwert dient gemäß Strahlenschutzgesetz als Maßstab für die Prüfung der Angemessenheit von Schutzmaßnahmen. Er ist kein Grenzwert, der nicht überschritten werden darf. Eine entsprechende Prüfung ist vorzunehmen, wenn die in der Anlage 1 des Strahlenschutzgesetzes ( StrlSchG ) genannten Rückstände oder die in Anlage 9 des StrlSchG genannten Rohstoffe zur Herstellung von Gebäuden, die Aufenthaltsräume enthalten, genutzt werden sollen. Der Nachweis zur Unterschreitung des festgelegten Referenzwertes der effektiven Dosis von 1 Millisievert pro Jahr erfolgt mithilfe des in Anlage 17 der Strahlenschutzverordnung ( StrlSchV ) dargestellten Aktivitätsindexes. Dieser wird aus den Aktivitäten der im Baustoff enthaltenen Radionuklide Radium-226, Thorium-232 und Kalium-40 unter Berücksichtigung von Dicke und Dichte des Baustoffs berechnet. 2. Baurecht Gemäß der Bauproduktenverordnung (BauPVO, Verordnung EU Nr. 305/2011 ) darf in den Mitgliedsstaaten der Europäischen Union ein Bauprodukt nur dann in Verkehr gebracht werden, wenn es die wesentlichen Anforderungen an Hygiene, Gesundheit und Umweltschutz - unter anderem bezüglich der Freisetzung gefährlicher Strahlen - erfüllt. Diese EU -Verordnung ist direkt im deutschen Recht verbindlich und für die Hersteller seit dem 1. Mai 2013 gültig. Die europäische Normungsinstitution CEN hat von der Europäischen Kommission den Auftrag erhalten, die Messung von Radium, Thorium und Kalium zu standardisieren sowie eine europäische Norm zur Berechnung der Dosis zu entwickeln. Naturwerksteine Natürliche Radionuklide in Naturwerksteinen Medianwerte der spezifischen Aktivität natürlicher Radionuklide in Naturwerksteinen Heute finden Naturwerksteine in allen Bereichen des Bauens im Hausinneren und im Freien verstärkt Anwendung. Deshalb hat das BfS mit Unterstützung des Deutschen Naturwerkstein-Verbandes e. V. im Jahr 2006 eine Reihe marktgängiger Fliesen und anderer Plattenmaterialien unterschiedlichster Herkunft auf die Gehalte natürlicher Radioaktivität untersucht und aus Strahlenschutzsicht bewertet. Im Vordergrund standen gammaspektrometrische Messungen der spezifischen Aktivitäten von Radium-226, Kalium-40 und Thorium-232. Die Ergebnisse sind in der Grafik zusammengefasst. Die dargestellten Medianwerte (Zentralwerte) bedeuten, dass die Hälfte der untersuchten Proben über diesem Wert liegt und 50 Prozent darunter. Die Materialgliederung erfolgt an dieser Stelle nach der Gesteinsart. Es muss darauf hingewiesen werden, dass im Handel aus Erwägungen, die sich an den speziellen Anwendungen, der Verarbeitung und Pflege der Materialien orientieren, nicht immer korrekte Gesteinsbezeichnungen verwendet werden. So muss es sich bei "Granit" nicht unbedingt um Granitgestein handeln; diese Bezeichnung wird auch für Gneise, Diorite, Granodiorite und andere Gesteine verwendet. Spezifische Aktivitäten der untersuchten Naturwerksteine Die spezifischen Aktivitäten der untersuchten Naturwerksteine liegen für Kalium-40 im Bereich zwischen 10 und 1.600 Becquerel pro Kilogramm, für Radium-226 zwischen weniger als 10 und 355 Becquerel pro Kilogramm und für Thorium-232 zwischen weniger als 10 und 330 Becquerel pro Kilogramm. Zum Vergleich und zur Ergänzung wird auf die oben gezeigte Tabelle hingewiesen. Die mögliche Strahlenexposition durch die einzelnen Materialien hängt neben der Radionuklidkonzentration und der Radonfreisetzung von der Art ihrer Verwendung ab. Im Ergebnis der Messungen des BfS ist festzustellen, dass die untersuchten aktuellen Bauprodukte und auch die untersuchten Naturwerksteine - selbst bei großflächiger Anwendung - in Gebäuden uneingeschränkt verwendbar sind. Das Strahlenschutzgesetz legt einen Referenzwert für die effektive Dosis durch Radionuklide natürlichen Ursprungs (außer Radon ) fest. Ein Referenzwert dient gemäß Strahlenschutzgesetz als Maßstab für die Prüfung der Angemessenheit von Schutzmaßnahmen. Er ist kein Grenzwert, der nicht überschritten werden darf. Der gesetzlich festgelegte Referenzwert für die effektive Dosis von 1 Millisievert pro Jahr für Personen der Bevölkerung durch Radionuklide natürlichen Ursprungs (außer Radon ) wird in allen Fällen eingehalten. Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 18.06.2025
Dieser Datensatz wurde aus diversen BGR-Befliegungsprojekten in Deutschland zusammengestellt. Die Messgebiete ergänzen den Datensatz zu den Gebieten an der deutschen Nordseeküste. Der BGR-Messhubschrauber (Sikorsky S-76B) wird zur aerogeophysikalischen Erkundung des Erduntergrundes eingesetzt. Das Standardmesssystem umfasst die Methoden Elektromagnetik, Magnetik und Radiometrie. Das passive Radiometriemesssystem (HRD) ist im Messhubschrauber eingebaut und besteht aus einem Gammastrahlenspektrometer mit fünf Natriumiodid-Detektoren zur Erfassung der Gammastrahlung. Die Ergebnisse werden als Karten der Totalstrahlung, Ionendosisleistung sowie (Äquivalent-)Gehalte von Kalium, Thorium und Uran am Boden dargestellt.
Im Rahmen eines früheren ReFoPlan-Projekts (FKZ 3717 62 205, Mobile Messsysteme für Innenraumschadstoffprobleme) wurde ein neues, zeitlich hochauflösendes Messsystem zur Erfassung einer Vielzahl von Klima- und Schadstoffparametern im Innenraum konstruiert. (Die Parameter umfassen Temperatur, relative Luftfeuchte, Luftdruck, Flüchtige organische Verbindungen (VOC), Gammastrahlung, Radon, die Beleuchtungsstärke, CO, H2S, NO, NO2, O3, SO2, CO2, PM1, PM2,5 und PM10). Von diesem Gerät soll eine Kleinserie gebaut und diese im Rahmen einer Feldkampagne im Realeinsatz bei Probanden getestet werden. Ziel ist es, die Voraussetzungen zu schaffen, dass dieses Gerät bei künftigen Bevölkerungsstudien (z.B. GerES) eingesetzt und somit neue innovative Parameter zur Qualität des Wohnumfeldes der Probanden erfasst werden können.
Strahlung ist eine Energieform, die sich als elektromagnetische Welle- oder als Teilchenstrom durch Raum und Materie ausbreitet. Die Strahlungsarten werden in 2 große Gruppen unterteilt, die sich durch ihre Energie unterscheiden. Strahlung, die bei der Durchdringung von Stoffen an Atomen und Molekülen Ionisationsvorgänge auslöst, wird als ionisierende Strahlung bezeichnet. Dazu gehören z.B. die Röntgen- und die Gammastrahlung. Als nichtionisierende Strahlung wird die Strahlung bezeichnet, bei der die Energie der Strahlung nicht ausreicht, Atome und Moleküle zu ionisieren. Dazu gehören z.B. Radio- und Mikrowellen, elektromagnetische Felder und das Licht. Ionisierende Strahlung ist sowohl Teil der Natur (Natürliche Radioaktivität) und somit Bestandteil der menschlichen Umwelt als auch das Resultat menschlicher Tätigkeit (Künstliche Radioaktivität).
Origin | Count |
---|---|
Bund | 143 |
Land | 23 |
Wissenschaft | 24 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Förderprogramm | 93 |
Messwerte | 3 |
Strukturierter Datensatz | 2 |
Text | 37 |
unbekannt | 52 |
License | Count |
---|---|
geschlossen | 65 |
offen | 101 |
unbekannt | 21 |
Language | Count |
---|---|
Deutsch | 151 |
Englisch | 57 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 4 |
Datei | 3 |
Dokument | 6 |
Keine | 136 |
Multimedia | 1 |
Webdienst | 2 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 102 |
Lebewesen & Lebensräume | 131 |
Luft | 82 |
Mensch & Umwelt | 187 |
Wasser | 75 |
Weitere | 179 |