s/gewasserverunreinigung/Gewässerverunreinigung/gi
<p>Im Schnitt nutzt jede Person in Deutschland täglich 126 Liter Trinkwasser im Haushalt. Für die Herstellung von Lebensmitteln, Bekleidung und anderen Bedarfsgütern wird dagegen so viel Wasser verwendet, dass es 7.200 Litern pro Person und Tag entspricht. Ein Großteil dieses indirekt genutzten Wassers wird für die Bewässerung von Obst, Gemüse, Nüssen, Getreide und Baumwolle benötigt.</p><p>Direkte und indirekte Wassernutzung</p><p>Jede Person in Deutschland verwendete im Jahr 2022 im Schnitt täglich 126 Liter <a href="https://www.umweltbundesamt.de/daten/wasserwirtschaft/oeffentliche-wasserversorgung">Trinkwasser</a>, etwa für Körperpflege, Kochen, Trinken, Wäschewaschen oder auch das Putzen (siehe Abb. „Trinkwasserverwendung im Haushalt 2023“). Darin ist auch die Verwendung von Trinkwasser im Kleingewerbe zum Beispiel in Metzgereien, Bäckereien und Arztpraxen enthalten. Der überwiegende Anteil des im Haushalt genutzten Trinkwassers wird für Reinigung, Körperpflege und Toilettenspülung verwendet. Nur geringe Anteile nutzen wir tatsächlich zum Trinken und für die Zubereitung von Lebensmitteln.</p><p>Die tägliche Trinkwassernutzung im Haushalt und Kleingewerbe ging von 144 Liter pro Kopf und Tag im Jahr 1991 lange Jahre zurück bis auf täglich 123 Liter pro Kopf im Jahr 2016. 2019 wurden von im Schnitt täglich 128 Liter pro Person verbraucht, 2022 waren es 126 Liter. Der Anstieg im Vergleich zu 2016 begründet sich durch den höheren Wasserbedarf in den jeweils heißen und trockenen Sommermonaten (siehe Abb. „Tägliche Wasserverwendung pro Kopf“).</p><p>Doch wir nutzen Wasser nicht nur direkt als Trinkwasser. In Lebensmitteln, Kleidungstücken und anderen Produkten ist indirekt Wasser enthalten, das für ihre industrielle Herstellung eingesetzt wurde oder für die Bewässerung während der landwirtschaftlichen Erzeugung. Dieses Wasser wird als virtuelles Wasser bezeichnet. Virtuelles Wasser zeigt an, wie viel Wasser für die Herstellung von Produkten benötigt wurde.</p><p>Deutschlands Wasserfußabdruck</p><p>Das virtuelle Wasser ist Teil des <a href="https://www.umweltbundesamt.de/themen/wasser/wasser-bewirtschaften/wasserfussabdruck">„Wasserfußabdrucks“</a>, der die direkt und indirekt verbrauchte Wassermenge einer Person, eines Unternehmens oder Landes angibt. Das Besondere des Konzepts ist, dass die Wassermenge, die in den Herstellungsregionen für die Produktion eingesetzt, verdunstet oder verschmutzt wird, mit dem Konsum dieser Waren im In- und Ausland in Verbindung gebracht wird. Der Wasserfußabdruck macht deutlich, dass sich unser Konsum auf die Wasserressourcen weltweit auswirkt. Der durch Konsum verursachte, kurz konsuminduzierte Wasserfußabdruck eines Landes, wird auf folgende Weise berechnet; in den Klammern werden die Werte des Jahres 2021 für Deutschland in Milliarden Kubikmetern (Mrd. m³) ausgewiesen:</p><p><strong>Nutzung heimischer Wasservorkommen – Export virtuellen Wassers (= 30,66 Mrd. m³) + Import virtuellen Wassers (188,34 Mrd. m³) = konsuminduzierter Wasserfußabdruck (219 Mrd. m³)</strong></p><p>Bei einem Wasserfußabdruck von 219 Milliarden Kubikmetern hinterlässt jede Person in Deutschland durch ihren Konsum einen Wasserfußabdruck von rund 2.628 Kubikmetern jährlich – das sind 7,2 Kubikmeter oder 7.200 Liter täglich. 86 % des Wassers, das man für die Herstellung der in Deutschland konsumierten Waren benötigt, wird im Ausland verbraucht. Für Kleidung sind es sogar nahezu 100 %.</p><p>Grünes, blaues und graues Wasser</p><p>Beim Wasserfußabdruck wird zwischen „grünem“, „blauem“ und „grauem“ Wasser unterschieden. Als „grün“ gilt natürlich vorkommendes Boden- und Regenwasser, welches Pflanzen aufnehmen und verdunsten. Als „blau“ wird Wasser bezeichnet, das aus Grund- und Oberflächengewässern entnommen wird, um Produkte wie Textilien herzustellen oder Felder und Plantagen zu bewässern. Vor allem Agrarprodukte haben einen großen Anteil am blauen Wasserfußabdruck von Deutschland (siehe Abb. „Sektoren mit den höchsten Beiträgen blauen Wassers zum Wasserfußabdruck von Deutschland“). Der graue Wasserfußabdruck veranschaulicht die Verunreinigung von Süßwasser durch die Herstellung eines Produkts. Er ist definiert als die Menge an Süßwasser, die erforderlich ist, um Gewässerverunreinigungen so weit zu verdünnen, dass die Wasserqualität die gesetzlichen oder vereinbarten Anforderungen einhält.</p><p>Bei den nach Deutschland eingeführten Agrarrohstoffen und Baumwollerzeugnissen sind die Anteile an grünem, blauem und grauem Wasser auch bei gleichen Produkten je nach Herkunft unterschiedlich hoch:</p><p>Bei der Entnahme von blauem Wasser zur Bewässerung von Plantagen kann es zu ökologischen Schäden und lokalen Nutzungskonflikten kommen. Ein bekanntes Beispiel ist der Aralsee: Der einst viertgrößte Binnensee der Erde war im Jahr 1960 mit einer Fläche von 67.500 Quadratkilometern nur etwas kleiner als Bayern. Heute bedeckt er aufgrund gigantischer Wasserentnahmen für den Anbau von Baumwolle und Weizen nur noch etwa 10 % seiner ehemaligen Fläche. Bis 2014 verlor er 95 % seines Wasservolumens bei einem gleichzeitigen Anstieg des Salzgehalts um das Tausendfache. Auch in weiteren Gebieten auf der ganzen Welt trägt der Konsum in Deutschland dazu bei, dass deren Belastbarkeit überschritten wird (siehe Karte „Hotspots des Blauwasserverbrauchs mit Überschreitung der Belastbarkeitsgrenzen durch Konsum in Deutschland“).</p>
Der Stickstoff-(N)-Haushalt weist in Obstanlagen grosse Unterschiede auf je nach Art der Standortsverhaeltnisse, der Witterung und der Bewirtschaftungsmassnahmen. Diese Unterschiede an Beispielen zu erfassen und auszuwerten als Grundlage fuer die Bemessung einer den Forderungen nach hohen Ertraegen, hoher Qualitaet und verminderter Gewaesserkontamination Rechnung tragenden Duengungspraxis, ist das Ziel des Vorhabens. Dazu werden in langfristigen Untersuchungen auf verschiedenen Standorten bei unterschiedlicher Bodenpflege und Duengung N-Vorrate, N-Nachlieferungsraten und N-Gehalte des Draenwassers ermittelt. Das Schwergewicht liegt dabei auf der Ermittlung der N-Nachlieferung durch den Brutversuch. Die Untersuchungen werden ergaenzt durch Bestimmungen des N-Gehaltes der Obstbaumblaetter und des Grasunterwuchses.
Es ist das wissenschaftliche Ziel der Arbeit, durch Auswertung der geologischen Daten, der geohydraulischen und geotechnischen Kennwerte, der chemischen Inhaltsstoffe, der Kenntnis der Edelgase und der Isotopendaten die Herkunft der Waesser zu klaeren. Die Ergebnisse des Forschungsvorhabens dienen als Grundlage fuer Fragen der quantitativen Bewirtschaftungsmoeglichkeiten, qualitativer Veraenderungen in Abhaengigkeit von der Bewirtschaftung, Gefahr von Verschmutzungen, Ausweisung von Heilquellenschutzgebieten und Erkundungen des Mineralwasserdargebots.
Da sich der Klimawandel und die menschlichen Aktivitäten verstärken, wird es erwartet, dass die terrestrischen Einträge von gelöstem organischem Material (Disssolved Organic Matter, DOM) in Seen zunehmen. Diese erhöhten Einträge führt zu einer braunen Verfärbung des Wassers und einer verringerten Lichtdurchlässigkeit in der Wassersäule, was Herausforderungen für die Seenökosysteme darstellt sowie ihren gesellschaftlichen Wert beeinträchtigt. Aquatische Mikroorganismen können besonders anfällig für die Verfärbung von Seen sein, mit Folgen für die Primärproduktion, Nahrungsnetze und das Auftreten von giftigen Algenblüten. Unsere Fähigkeit, die ökologischen Folgen der Verfärbung von Seen vorherzusagen, wird jedoch durch begrenztes Wissen über die Reaktionen der mikrobiellen Gemeinschaft, sowie die Widerstandsfähigkeit dieser Gemeinschaften gegenüber Umweltveränderungen beeinträchtigt. Wir schlagen vor, dass die Reaktion der aquatischen Mikroorganismen auf Umweltstress stark von Interaktionen mit anderen Mitgliedern der Gemeinschaft beeinflusst wird. Daher wird dieses Projekt ökologische Interaktionen zwischen einzelligen Algen (Phytoplankton) und Bakterien in Seen untersuchen, die erhöhte DOM Einträge und reduzierte Lichtverfügbarkeit erleben. Während mikrobielle Interaktionen hauptsächlich in vereinfachten Modelsystemen untersucht wurden, bleibt die Empfindlichkeit von algenassoziierten Bakteriengemeinschaften gegenüber Umweltstressoren und deren Auswirkungen auf die physiologischen Eigenschaften der Algen weitgehend unerforscht. Um diese Lücke zu schließen, unser Ziel ist es, zu untersuchen, wie sich die Verfärbung des Wassers auf Folgendes auswirkt: 1. die physiologischen Reaktionen des Phytoplanktons, 2. den Transfer von DOM zwischen Algen und assoziierten Bakterien und 3. die Zusammensetzung der algenassoziierten Bakteriengemeinschaften. Damit wollen wir die wechselseitigen Einflüsse zwischen Phytoplankton und zugehörigen Bakterien sowie die Kohlenstoffaufnahme von interessanten bakteriellen Taxa unter sich ändernder Licht- und DOM-Verfügbarkeit entschlüsseln. Messungen der natürlichen Isotopenhäufigkeit und Labeling Experimente mit stabilen Isotopen werden verwendet, um die Primärproduktion, die Atmung und die Aufnahme des durch die Algen produzierten Kohlenstoffs quantitativ zu erfassen. Darüber hinaus werden wir Mikroskopie und genomische Analysen verwenden, um die räumliche Strukturierung und die Zusammensetzung der algenassoziierten Gemeinschaft von Mikroorganismen zu erfassen. Unsere Experimente werden uns helfen zu verstehen, ob die grundlegende Funktionalität trotz der Veränderungen der Gemeinschaft erhalten bleibt, und welche bakteriellen Taxa und Funktionen voraussichtlich stärker auf die Veränderungen reagieren werden. Dieses Projekt wird das Wissen über Interaktionen auf zellulärer Ebene in eine ökosystemweite Perspektive von Süßwasserseen integrieren.
Traditionell wird seit vielen Jahren das Chemische Untersuchungsamt der Universitaet von der Hamburgischen Wasserschutzpolizei und der Staatsanwaltschaft-Fachabteilung Umweltstraftaten mit der chemischen Untersuchung, Zuordnung und Begutachtung von Gewaesserverunreinigungen durch Mineraloele sowie umweltrelevante Chemikalien jeglicher Art beauftragt. In letzter Zeit wurden bessere, verfeinerte - teilweise auch neue - Verfahren fuer eine strafgerichtsbestaendige chemisch-analytische Beweisfuehrung bei Gewaesserverunreinigungen durch Oele erarbeitet. In einem internationalen Ringversuch erreichte das Untersuchungsamt dabei ausgezeichnete Ergebnisse.
Die Daten des Wassergütemessnetzes zur Qualität der Hamburger Gewässer werden auf verschiedenen Wegen bereitgestellt. 1. Hamburg Service: Hier können alle Datensätze abgerufen werden, die dann graphisch angezeigt oder in Tabellenform ausgegeben werden. Der Online-Dienst kann mit einer kostenlosen Registrierung beim Hamburg Service genutzt werden. Anschließend ist das neue Angebot sofort verfügbar. Der Dienst kann auch ohne Registrierung genutzt werden, dann fehlen aber einige Funktionen des Hamburg Service, wie z.B. die Benachrichtigung über fertiggestellte Anfragen. 2. Aktuelle Daten und ausführliche Informationen zum WGMN finden sich im Internet unter www.wgmn.hamburg.de 3. App "Gewässerdaten Hamburg" informiert über Temperatur, Algenentwicklungen, Sauerstoffkonzentration, pH-Wert, Leitfähigkeit und Trübung der Alster, Elbe und Bille. Die App liefert die Daten der zehn automatischen Messstationen an Alster, Elbe und Bille als Grafiken und die aktuellen Werte als Listen. Die Daten können auch als Textdatei heruntergeladen werden. 4. Karten zu den Hafenmessfahrten: Die der Ergebnisse der Hafenmessfahrten sind als Karten bei geo-online verfügbar.
Für die Gewässer sind Wasserbücher zu führen. In das jeweilige Wasserbuch sind nach § 87 des Wasserhaushaltsgesetzes (WHG) in Verbindung mit § 98 ff. des Hamburgischen Wassergesetzes (HWaG) insbesondere einzutragen: - Erlaubnisse und Bewilligungen - alte Rechte und Befugnisse - Wasserschutzgebiete - Überschwemmungsgebiete und Risikogebiete - Entscheidungen über die Unterhaltung, den Ausbau und den Hochwasserschutz In die Wasserbücher werden die über den Gemeingebrauch hinausgehenden, von den zuständigen Wasserbehörden durch Verwaltungsakte übertragenen Nutzungsrechte an oberirdischen Gewässern sowie am Grundwasser eingetragen. Die Eintragungen beinhalten die Art der Nutzung (z.B. Grundwasserförderung, Herstellen eines Steges) sowie Angaben zum Umfang der Nutzung (z.B. erlaubte Fördermengen, Größe des Steges). Das Wasserbuch dient dazu, den auf die Gewässer einwirkenden oder für ihren Schutz zuständigen öffentlichen Stellen sowie den Bürgerinnen und Bürgern einen umfassenden Überblick über die wesentlichen Rechtsverhältnisse an Gewässern zu geben. Die Einsicht in das Wasserbuch, in seine Abschriften und diejenigen Urkunden auf die in der Eintragung Bezug genommen wird, ist deshalb jedem gestattet. Entsprechend der Anordnung über die Zuständigkeiten auf dem Gebiet des Wasserrechts und der Wasserwirtschaft gibt es in Hamburg drei Dienststellen, die separat für ihren Zuständigkeitsbereich das Wasserbuch führen und dort Eintragungen ganz bestimmter Rechtsverhältnisse vornehmen. Die Wasserbücher dieser Dienststellen haben folgende Inhalte: * Wasserbuch der Behörde für Umwelt und Energie (BUE/IB) Die Behörde für Umwelt und Energie, Amt IB, führt das Wasserbuch für Erlaubnisse nach § 10 WHG für die Einleitung von Abwasser in Gewässer bzw. für die Entnahme von Wasser aus Gewässern für folgende Gewässer: Außen- und Binnenalster samt elbseitiger Fleete, Elbe sowie alle Hafengewässer, Este, Dove-Elbe unterhalb der Tatenberger Schleuse, Untere Bille und ihre Kanäle, Harburger Binnenhafen, Kaufhauskanal, Östlicher Bahnhofskanal, Westlicher Bahnhofskanal sowie Schiffsgraben. Für alle übrigen Gewässer siehe Wasserbuch der Behörde für Umwelt und Energie (BUE/U). * Wasserbuch der Behörde für Umwelt und Energie (BUE/U) Die Behörde für Umwelt und Energie, Amt U, führt zwei Teilwasserbücher, die zur Zeit noch technisch und organisatorisch getrennt sind. Es handelt sich zum einen um das Wasserbuch für - das Grundwasser (Ausnahme: Neuwerk), - Gewässer II. Ordnung (Ausnahme: Neuwerk) sowie - Gewässer I. Ordnung (Ausnahmen: Neuwerk/ Elbe/ Hafengewässer/ Erlaubnisse zum Einleiten oder Entnehmen nach § 8 WHG), zum anderen um das Wasserbuch für - Regelungen über die Unterhaltung und den Ausbau oberirdischer Gewässer sowie - Regelungen und Entscheidungen über das Errichten und Verändern von staatlichen Hochwasserschutzanlagen und die Zulassung von Rohrleitungen in Deichen und Dämmen. * Wasserbuch der Hamburg Port Authority (HPA) Das Wasserbuch der HPA/213 - beinhaltet u.a. wasserrechtliche Genehmigungen über die Nutzung und den Ausbau der Gewässer Elbe, Hafengewässer, Este, Alten Süderelbe, Überschwemmungsgebiete der Elbe und Vorland der Alten Süderelbe sowie deichrechtliche Genehmigungen für die privaten Hochwasserschutzanlagen (Polder) und Nutzungen auf Neuwerk. Detaillierte Informationen zu den beiden Wasserbüchern der Behörde für Umwelt und Energie sind den nachgeordneten Objekten des HMDK der jeweiligen Dienststelle zu entnehmen. Für das Wasserbuch der HPA sind keine detaillierten Daten im HMDK vorhanden.
Untersuchungen ueber Art und Menge von Salmonellen in Oberflaechengewaessern und ihre Bedeutung in bezug auf die Gefaehrdung der Gesundheit des Menschen.
Grosse Gebiete im Vorland des Erzgebirges fuehren radonkontaminierte Grundwaesser, deren Herkunft und Auswirkung auf die menschliche Gesundheit nur wenig bekannt sind. Im Vordergrund der Untersuchung steht die Herkunft der Waesser und die moegliche Dekontamination.
Die Technologien thermischer Kraftwerke zur Deckung des Strombedarfs werden nach heutigem Wissensstand in absehbarer Zukunft nicht auf die Nutzung von Wasser verzichten koennen. Die dabei entstehende thermische Belastung der Gewaesser laesst sich mit geeigneten Massnahmen verringern. Diese Reduzierung ist jedoch durch die zunehmende Anwendung der nassen Rueckkuehlung mit Verdunstungsverlusten verbunden. Ein Abflussdefizit ist die Folge. Bei geringer Wasserfuehrung des Flusses kann daher die Stromerzeugung zu Nutzungseinbussen der uebrigen Anlieger fuehren. Vor diesem Hintergrund ergab sich die Notwendigkeit, neben der Kuehlung auch die uebrigen wassernutzenden Prozesse im Kraftwerk wie Verbrennung, Dampferzeugung, Zusatzwasser-Aufbereitung fuer die verschiedenen Kreislaeufe usw. auf ihre Verdunstung hin zu untersuchen, um in Abhaengigkeit von Technologie und Energiequelle ihre Einfluesse auf den Wasserhaushalt darlegen zu koennen. Durch Vergleich dieser Verluste mit der Wasserfuehrung der Fluesse werden Moeglichkeiten der Kraftwerksplanung nach wassermengenorientierten Gesichtspunkten entwickelt.
| Origin | Count |
|---|---|
| Bund | 1248 |
| Kommune | 7 |
| Land | 678 |
| Wirtschaft | 2 |
| Wissenschaft | 20 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 4 |
| Daten und Messstellen | 554 |
| Ereignis | 28 |
| Förderprogramm | 947 |
| Gesetzestext | 1 |
| Taxon | 8 |
| Text | 232 |
| Umweltprüfung | 4 |
| unbekannt | 149 |
| License | Count |
|---|---|
| geschlossen | 363 |
| offen | 1533 |
| unbekannt | 31 |
| Language | Count |
|---|---|
| Deutsch | 1677 |
| Englisch | 279 |
| andere | 65 |
| Resource type | Count |
|---|---|
| Archiv | 555 |
| Bild | 7 |
| Datei | 40 |
| Dokument | 183 |
| Keine | 891 |
| Unbekannt | 5 |
| Webdienst | 5 |
| Webseite | 962 |
| Topic | Count |
|---|---|
| Boden | 1927 |
| Lebewesen und Lebensräume | 1927 |
| Luft | 1927 |
| Mensch und Umwelt | 1919 |
| Wasser | 1927 |
| Weitere | 1927 |