The main aim of the BaltVib sampling campaign was to analyse the microbial community composition in pelagic and benthic habitats with special focus on Vibrio spp. bacteria inside and outside of eelgrass meadows (Zostera marina), and selected macroalgae populations (Fucus spp.) in the salinity gradient of shallow coastal waters of the Baltic Sea. The temporal extent of the dataset is 25.07.2021 to 02.09.2021. The geographic extent of the dataset is spanning from 9°52,655 E to 25°00,698 W and 60°06,547 N to 54°00,8666 S. The measurement depth ranges from 0.2 meters to 7 meters. Salinity ranges from 4 to 14. Environmental parameters measured are: conductivity, temperature, pH, Secchi depth, chlorophyll a, dissolved oxygen, ammonium, nitrate, nitrite, phosphate, silicate, grain size, dissolved organic carbon, dissolved nitrogen, particulate organic nitrogen, particulate organic carbon. Vibrio spp. colony forming units were counted using TCBS agar plates. Abundance of Vibrio vulnificus was determined by ddPCR in water and sediment samples as well as in Zostera marina surface biofilm. Cell counts by flow cytometry contain: Synechococcus, Picoeukaryota, Nanoeukaryota, high-nucleic acid bacteria, low-nucleic acid bacteria. Macrophyte abundance was measured for Zostera marina and Fucus spp..
This publication provides a database on metal contamination of sediments collected along seven rivers draining Western Europe (French Rhône, Garonne-Lot, Loire, Meuse, Rhine, Scheldt and Seine Rivers). This dataset is based on both long-term monitoring and scientific research (see column sources). It presents major (Al, Fe) and trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) coming from various solid matrices, such as suspended particulate matter (SPM), dated sediment cores (DSC), and bed and flood deposits (BFD). It also provides information about the extraction procedure, grain-size (expressed as a percentage of the fine particle [silts and clays < 63 µm] proportion in the samples) and total organic carbon (TOC) contents when available. It could be use to assess the level of metal contamination along the river since 1945 and to decipher the key factors influencing metal concentrations in river sediments over space and time.
EMMA – End Member Modelling Analysis of grain-size data is a technique to unmix multimodal grain-size data sets, i.e., to decompose the data into the underlying grain-size distributions (loadings) and their contributions to each sample (scores). The R package EMMAgeo contains a series of functions to perform EMMA based on eigenspace decomposition. The data are rescaled and transformed to receive results in meaningful units, i.e., volume percentage. EMMA can be performed in a deterministic and two robust ways, the latter taking into account incomplete knowledge about model parameters. The model outputs can be interpreted in terms of sediment sources, transport pathways and transport regimes (loadings) as well as their relative importance throughout the sample space (scores).
XRF core-scanning data characterizes the sediment composition geochemically and supports palaeoclimatic reconstruction of glacial/interglacial cycles for the Middle Pleistocene sediment record from the crater basin of Rodderberg, Germany. A 72.8 m long sediment record was recovered by means of wire-line drilling with 3 m long liners from the silted-up crater basin of Rodderberg (East Eifel Volcanic Field) in the vicinity of the city of Bonn, Germany. The composite record ROD11 was subjected to XRF core scanning with a spatial resolution of 2 mm using an ITRAX XRF core scanner, Cox Analytics with a Molybdenum X-ray tube (Croudace et al., 2019; Croudace and Rothwell, 2015). The measurements were conducted with a fixed setting of 30 kV, 40 mA, and an exposure time of 5 s. The software Q-spec (Cox Analytics) was employed for processing of the scanner output and calculation of qualitative elemental measurements in counts. Principal component analysis was then employed to reduce the data dimension and identify latent environmental control factors for the reliable set of elemental data in the normalized (clr-transformed) and standardized XRF dataset (Bertrand et al., 2024). Valued by multiple dating techniques for the past 430 ka, this terrestrial record provides an environmental reconstruction since the Middle Pleistocene.
Bulk geochemistry characterizes sediment composition and supports palaeoclimatic reconstruction of glacial/interglacial cycles for the Middle Pleistocene sediment record from the crater basin of Rodderberg, Germany. A sediment record measuring 72.8 m in length was retrieved by employing wire-line drilling techniques, utilising 3 m-long liners, from the silted-up crater basin of Rodderberg (East Eifel Volcanic Field) in the vicinity of the city of Bonn, Germany. The composite record ROD11 was subjected to continuous analysis for bulk geochemistry (total carbon, total nitrogen, total sulphur) with 10 cm spatial resolution employing a CNS analyser (EuroEA, Eurovector). Additionally, the analysis of total organic carbon was carried out with the same setup but after the destruction of carbonates with 3% and 20% sulphuric acid. The difference between total carbon and total organic carbon yields total inorganic carbon, a proxy parameter for carbonates. The calculation of organic matter was performed by multiplication of total organic carbon with a value of 2.13, in accordance with the methodology proposed by Dean (1974). The calculation of carbonaceous matter was accomplished by multiplying total inorganic carbon values with 8.33, in order to account for the stoichiometric mass change from C to CaCO3. Minerogenic matter was determined as the difference between 100 and the sum of organic matter and carbonaceous matter. These parameters enhance the palaeoclimatic interpretation for the past 430 ka. Valued by multiple dating techniques, this terrestrial record provides an environmental reconstruction since the Middle Pleistocene.
Biogenic silica data characterize lacustrine sediments and support the palaeoclimatic interpretation of interglacials for the Middle Pleistocene sediment record from the crater basin of Rodderberg, Germany A 72.8 m long sediment record was recovered by means of wire-line drilling with 3 m long liners from the silted-up crater basin of Rodderberg (East Eifel Volcanic Field) in the vicinity of the city of Bonn, Germany. The composite record ROD11 was analysed for the presence of biogenic silica, with a 20 cm spatial resolution for interglacial periods and a 100 cm spatial resolution for glacial periods. The investigations were conducted using automated leaching in a continuous flow system (Müller and Schneider, 1993). The extraction of biogenic silica was performed with 1 M NaOH solution at a temperature of 85 °C. The presence of dissolved biogenic silica was detected through spectrophotometric analysis. This parameter serves as a proxy for the presence of diatoms in the sediment record and indicates the depositional conditions in a lake and its trophic state. This proxy parameter enhances the interpretation of organic matter, which is not only of lacustrine origin but can also be contributed by in wash of terrestrial plant remains, and the palaeoclimatic interpretation over the past 430 ka. The terrestrial record from Rodderberg is of significant value, as it can be dated using multiple techniques and provides a reconstruction of the environment since the Middle Pleistocene.
Magnetic susceptibility – a proxy parameter for core correlation and reconstruction of glacial/interglacial cycles for the Middle Pleistocene sediment record from the crater basin of Rodderberg, Germany. A 72.8 m long sediment record was recovered by means of wire-line drilling with 3 m long liners from the silted-up crater basin of Rodderberg (East Eifel Volcanic Field) in the vicinity of the city of Bonn, Germany. The two drill holes (ROD11-2 and ROD11-3) were merged to establish a composite record (ROD11) based on macroscopic sediment description and were fine-tuned by magnetic susceptibility data. Magnetic susceptibility was continuously logged with 1 cm spatial resolution with a Bartington loop-sensor (MS2C) on a GEOTEK multi-sensor core-logger. Furthermore, this parameter facilitates the differentiation between glacial and interglacial sediments, thereby supporting the palaeoclimatic interpretation based on geochemical data spanning the past 430 ka. The combined evidence suggests a depositional evolution from a deep crater lake via a shallow lake or desiccating wetland followed by deposition of loess and pedogenesis. This terrestrial record, evaluated through multiple dating techniques, offers a comprehensive environmental reconstruction since the Middle Pleistocene.
Grainsize data supports palaeoclimatic reconstruction of glacial/interglacial cycles for the Middle Pleistocene sediment record from the crater basin of Rodderberg, Germany. A sediment record measuring 72.8 m in length was retrieved by employing wire-line drilling techniques, utilising 3 m-long liners, from the silted-up crater basin of Rodderberg (East Eifel Volcanic Field) in the vicinity of the city of Bonn, Germany. For the purpose of grainsize analysis, the composite record ROD11 was systematically subsampled at a spatial resolution of 2 cm and examined through a laser diffraction particle size analyser (Beckman Coulter LS 13320). The resulting sedimentological data characterise glacials as silt-dominated (aeolian sediments: loess), interglacials as sand-dominated (runoff-related deposits from the step crater walls) and clay dominance for the Holocene soil. The terrestrial sediment record has been evaluated through multiple dating techniques and it provides a comprehensive environmental reconstruction since the Middle Pleistocene, thus providing valuable insights into the region's climate history.
Vibrio – microbes that are part of the natural bacterioplankton in temperate marine waters – have in recent years flourished in the Baltic Sea, probably stimulated by elevated surface water temperatures. Several Vibrio species are human pathogens. It is hence of great concern that Vibrio-related wound infections and fatalities have increased dramatically along the Baltic coasts. Future climate change is predicted to escalate this problem, posing a significant threat to human health and the Baltic tourism industry. However, the projections do not yet take into account the influence of ‘ecosystem engineers’ such as mussels and macrophytes on Vibrio diversity and abundance. Recent data indicate that in some of the ‘ecosystem engineers’ habitats the abundance of pathogenic Vibrio spp. is reduced. This opens up the option for nature-based solution (NbS) strategies to control pathogenic vibrios in the nearshore habitat where humans interact with the sea. However, climate change will also affect the structure and functioning of the ecosystem engineers, with as yet unknown consequences for the Vibrio populations in the Baltic Sea. BaltVib aims to delineate the current and future Vibrio status, determine biotic and abiotic key factors regulating Vibrio prevalence, and identify NbSs to mitigate the problem. This will be accomplished through interdisciplinary integration of marine, microbiological, molecular and socio-ecological expertise carried by partners from seven Baltic nations.
Origin | Count |
---|---|
Wissenschaft | 9 |
Type | Count |
---|---|
Messwerte | 6 |
Strukturierter Datensatz | 6 |
unbekannt | 3 |
License | Count |
---|---|
offen | 2 |
unbekannt | 7 |
Language | Count |
---|---|
Englisch | 9 |
Resource type | Count |
---|---|
Datei | 6 |
Keine | 2 |
Webseite | 1 |
Topic | Count |
---|---|
Boden | 8 |
Lebewesen & Lebensräume | 8 |
Luft | 3 |
Mensch & Umwelt | 9 |
Wasser | 5 |
Weitere | 9 |