s/heavy-precipitation/heavy precipitation/gi
Ein Brennpunkt steigenden Nahrungsmittelbedarfs ist das Albertine Rift in Afrika. Diese Region leidet unter massiver Bodendegradation aufgrund von steilen Hängen, hoher Frequenz von erosiven Starkniederschlägen und einer geringen Vegetationsbedeckung über die gesamte Vegetationsperiode. Aus dem hohen Landnutzungsdruck auf Bodenressourcen resultieren zahlreiche soziale und ökologische Probleme (Ernährungsunsicherheit, politische Unruhen, Migration). Da der Bodenverlust auf ackerbaulich genutzten Flächen die Bodenneubildung in der Region substanziell übersteigt, ist die landwirtschaftliche Nutzbarkeit der Bodensysteme zeitlich begrenzt. Flächen mit einem vollständigen Verlust der Bodenoberfläche verlieren dauerhaft das Potenzial eine gesunde Biozönose zu beherbergen. Dabei ist die Zeitskala bis zum endgültigen Verlust der Bodenoberfläche sehr heterogen und wird durch die lokale Bodenerosionsrate und die Tiefe des Bodens bis zum Ausgangsgestein bestimmt. Solozori hat zum Ziel die Bodendegradationsdynamik und ihre Auswirkungen auf die landwirtschaftliche Produktivität, die Bodenqualität und schließlich den Zusammenbruch der Ökosystemleistungen im tropischen Afrika zu verstehen und zu quantifizieren. Solozori untersucht das Ruwenzori-Gebirge von Uganda, in welchem ein hoher Landnutzungsdruck besteht und zur Entwaldung und ackerbaulichen Nutzung von steilen Hängen führt. Diese Ackerflächen sind einer enorm hohen Degradationsgeschwindigkeit ausgesetzt, welche ihre Ertragsfähigkeit aufgrund flacher Böden innerhalb von Jahrzehnten verlieren. Aufgrund dieser flachen Böden ist die Region ein ideales Beispiel für die Untersuchung von Prozessen im Zusammenhang mit begrenzten Bodenressourcen, die langfristig die Nahrungsmittelsicherheit gefährden und die Chancen einer erfolgreichen Wiederaufforstung verhindern. Solozori nutzt Fernerkundungsinformationen zur Erschließung der Landnutzungsgeschichte und Vegetationsmuster, während topografische Landschaftsmerkmale und Fallout-Radionuklide Aufschluss über die langfristigen Bodenumverteilungsraten geben. Diese Bodenumverteilungsraten werden mit den vorhandenen Bodenressourcen (Bodentiefe bis zum Ausgangsgestein) verglichen, um die räumliche Ausdehnung und die verbleibende Zeit bis zum Verlust der Anbauflächen des Rwenzori-Gebirges zu ermitteln. Solozori ist ein Beispielprojekt zur Demonstration von Ertragseffekten vor dem Hintergrund von sich verknappenden Bodenressourcen. Solozori dient damit dem dringend notwendigen Verständnis über langfristige Bodendegradationsprozesse, welche die Grundlage zur Entwicklung von nachhaltigen Agroökosystemnutzungsstrategien sind, um den Landnutzungsdruck auf Waldressourcen zu verringern und den dramatischen Verlust von bodenbezogenen Ökosystemleistungen einzudämmen. Solozori setzt den Verlust von Ackerland in eine zeitliche Dimension, was den Handlungsbedarf zum Schutz von Bodensystemen der afrikanischen Tropen auf einer neuen Ebene veranschaulicht.
Der Kartendienst (WMS Gruppe) stellt Daten der Starkregengefahrenkarte der Stadt Ottweiler dar.:Der Kartendienst (WMS Gruppe) stellt Daten der Starkregengefahrenkarte der Stadt Ottweiler dar.
Der Kartendienst (WMS Gruppe) stellt Daten der Starkregengefahrenkarte der Stadt Ottweiler dar.:Dieser Datensatz stellt die Fließrichtungen und - geschwindigkeit bei einem Niederschlagszenario hN 90 mm, verschlämmt für die Stadt Ottweiler dar.
"Die Ermittlung der Risikobereiche erfolgte durch visuelle Auswertung der Starkregengefahrenkarte. Maßgebend waren solche Bereiche, in denen großflächig höhere Einstautiefen und / oder hohe Fließgeschwindigkeiten auftreten können und in denen sich Gebäude befinden. Zusätzlich wurde zur Herleitung dieser Bereiche noch geprüft, woher die Gefährdung kommt, aus dem Außenbereich oder ausschließlich aus der Ortsentwässerung. Dies spielt bei den möglichen Schutzmaßnahmen eine Rolle. Innerhalb der Ortslagen ist die Auswahl an Schutzmaßnahmen begrenzt und schwierig umzusetzen. Basierend auf diesen Vorgaben wurden die Risikobereiche ermittelt. Zusätzlich zu den Risikobereichen wurden Handlungsbereiche für Maßnahmen erstellet, die dem Einzugsgebiet der Risikobereiche entsprechen. Diese sind zusammen mit Vorschlägen für potentielle technische Schutzmaßnahmen in Maßnahmensteckbriefen dargestellt. Handlungsbereiche und Maßnahmensteckbriefe sind nicht in GMSC vorhanden. "
Die vorliegende Karte zeigt eine topografische Fließwegeanalyse. Sie ist das Ergebnis einer Analyse von Rasterdaten auf Grundlage des Digitalen Geländemodells aus dem Jahr 2023. Ihr liegen keine Regenbelastungen zugrunde. Die Karte gibt erste Anhaltspunkte, wo es aufgrund topografischer Gradienten zu Fließwegen in Folge von Starkregenereignissen kommen könnte. Weitere Informationen finden sich auf https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/wasser/regenwasser/starkregenhinweiskarte-160556
Die markierten Standorte sind Schwerpunkte des Sedimenttransportes und der Bodenakkumulation bei Erosionsereignissen infolge von Starkniederschlägen. Übertrittsstellen befinden sich vor allem an Gewässern, Biotopen, baulichen Anlagen etc. Akkumulationsflächen sind häufig am Ende von Abflussbahnen lokaliosiert. Die Übertrittsstellen und Akkumulationsflächen wurden aktenkundig aufgenommen. Orientierende Untersuchungen wurden durchgeführt, um geeignete Maßnahmen zur Gefahrenabwehr, zur Schadensminimierung und Verhinderung vorzuschlagen. Diese Informationen dienen als Grundlage für die Umsetzung von Erosionsschutzmaßnahmen zur Gefahrenabwehr und zur Vermittlung von Vorsorgepflichten zur Vermeidung von Bodenerosionen auf landwirtschaftlich genutzten Flächen.
Heftige Niederschlagsereignisse sind für Schäden in Höhe von Milliarden Euros verantwortlich und verursachen jährlich Hunderte von Verletzten und Todesfällen in Europa und weltweit. Eisgewitter im Winter, Hagel, Eisregen, extreme Regenfälle aus Gewittern im Sommer sowie dadurch verursachtes Hochwasser und Erdrutsche sind die schädlichsten Wetterereignisse auf unserem Kontinent mit schweren ökologischen, ökonomischen und sozialen Folgen. Deshalb ist die kurzfristige Vorhersage von Form, Intensität und Verlagerung solcher konvektiven Wolken- und Niederschlagssysteme von großer Bedeutung. Numerische Wettermodelle und Fernerkundungsgeräte, wie z. B. der Niederschlagsradar, liefern fehlerbehaftete Wetterprognosen, da die Mikrophysik von Mischphasenwolken- und Niederschlagsteilchen nur unvollständig beschrieben sind. Vor allem wird eine korrekte Darstellung des Schmelzprozesses von Schnee, Hagel und Graupel für diese Wettersysteme benötigt. Das Ziel des HydroCOMET Projekts ist es, Parametrisierungen der wichtigsten physikalischen Eigenschaften von schmelzenden Eis-Hydrometeoren bereitzustellen. Diese beschreiben die kontinuierlich variierende Form, die Fallgeschwindigkeit und den Flüssigwasseranteil der Hydrometeore während ihres Schmelzens. Weiterhin werden die Auswirkungen von Turbulenz in der Luftströmung und von Kollisionen zwischen dem schmelzenden Hydrometeor und unterkühlten Wassertropfen untersucht. Die Experimente werden im Mainzer vertikalen Windkanal durchgeführt, der eine einzigartige Plattform zur Untersuchung einzelner Wolken- und Niederschlagsteilchen unter realen atmosphärischen Bedingungen darstellt. Die neuen Parametrisierungen der mikrophysikalischen Eigenschaften von schmelzenden Eis-Hydrometeoren aus den HydroCOMET Experimenten werden in Niederschlagsmodellen und Radaralgorithmen verwendet.
Gefährdungspotenzial durch Flusshochwasser Für die Landeshauptstadt Dresden wurde ein Klimaanpassungskonzept erarbeitet, dass die Klimaveränderungen und dessen Folgen in Dresden aufzeigt. In diesem Rahmen wurden Gefährdungsanalysen für die Dresdner Stadtteile erstellt. Das Gefährdungspotenzial ergibt sich aus der Sensitivität eines Systems bezüglich der Klimaveränderung und der Exposition (Lage im Stadtraum). Für die Analyse standen die menschliche Gesundheit, Gebäude und Infrastruktur im Fokus. Gefährdungspotenziale wurden für die Themen Wärmebelastung sowie die Überschwemmungsgefahr durch Starkregen und Flusshochwasser untersucht - hier Flusshochwasser. In die Analyse flossen die rechtlich festgesetzten Überschwemmungsgebiete der Elbe, der Gewässer 1. Ordnung und des Lockwitzbaches/Niedersedlitzer Flutgrabens für ein 100 jährliches Hochwasser ein. Außerdem wurden die Flächen kritischer und nicht-kritischer Flächennutzung einbezogen. Ausschlaggebend für das Gefährdungspotenzial ist der absolute Flächenanteil der überschwemmten Gebiete sowie deren relativer Anteil an der Gesamtfläche des Stadtteils. Damit wird vermieden, dass flächengroße Stadtteile überrepräsentiert werden. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung bewerten und die Maßnahmenentwicklung und -umsetzung priorisieren zu können. Weitere Informationen zur Gefährdungsanalyse und möglichen Anpassungsoptionen sind dem Klimaanpassungskonzept zu entnehmen. Die Gefährdungsanalyse wurde im Rahmen der Erstellung des Klimaanpassungskonzeptes vom Thüringer Institut für Nachhaltigkeit und Klimaschutz (ThINK) durchgeführt. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung in den verschiedenen Bereichen bewerten zu können. Mit Hilfe der Analyse kann die Maßnahmenentwicklung und -umsetzung priorisiert werden.
| Origin | Count |
|---|---|
| Bund | 1281 |
| Kommune | 90 |
| Land | 945 |
| Wirtschaft | 7 |
| Wissenschaft | 13 |
| Zivilgesellschaft | 14 |
| Type | Count |
|---|---|
| Daten und Messstellen | 6 |
| Ereignis | 14 |
| Förderprogramm | 754 |
| Lehrmaterial | 2 |
| Taxon | 2 |
| Text | 940 |
| Umweltprüfung | 100 |
| unbekannt | 316 |
| License | Count |
|---|---|
| geschlossen | 1146 |
| offen | 958 |
| unbekannt | 29 |
| Language | Count |
|---|---|
| Deutsch | 2065 |
| Englisch | 207 |
| Resource type | Count |
|---|---|
| Archiv | 29 |
| Bild | 70 |
| Datei | 23 |
| Dokument | 367 |
| Keine | 966 |
| Multimedia | 2 |
| Unbekannt | 15 |
| Webdienst | 137 |
| Webseite | 885 |
| Topic | Count |
|---|---|
| Boden | 1854 |
| Lebewesen und Lebensräume | 1969 |
| Luft | 2133 |
| Mensch und Umwelt | 2133 |
| Wasser | 1887 |
| Weitere | 2071 |