API src

Found 1765 results.

Related terms

Messungen von vulkanischen Schwefel- und Kohlenstoffemissionen mit hoher Zeitauflösung

Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.

Turbulenzinteraktionen in der atmosphärischen Grenzschicht: Ein skalenübergreifender Ansatz zur Aufklärung oberflächennaher Austauschprozesse

Die Atmosphäre und die Vegetation der Erdoberfläche beeinflussen sich gegenseitig durch bidirektionale Austauschprozesse. Modelle zur Wetter- und Klimavorhersage basieren auf einem mechanistischen Verständnis dieser Interaktionen. Die Vorhersagen und die grundlegenden Theorien funktionieren allerdings nur im Falle einer gut durchmischten (turbulenten) atmosphärischen Grenzschicht. Wenn jedoch stabile atmosphärische Bedingungen vorherrschen, wie typischerweise nachts der Fall, dann sind die bisherigen Theorien nicht ausreichend, um zuverlässige Vorhersagen zu treffen. Um oberflächennahe turbulente Austauschprozesse während stabiler atmosphärischer Schichtung mechanistisch zu verstehen und neue Theorien zu entwickeln, sind zunächst neuartige Mess- und Analyse-Methoden notwendig. Ziel dieses Projekts ist die Beobachtung und Charakterisierung von oberflächennahen Prozessen in der stabilen atmosphärischen Grenzschicht durch eine neuartige Kombination von Mess- und Analysemethoden. Mit einem hochauflösenden in-situ Messkubus (20x20x5m), der sich innerhalb eines größeren mittels Fernerkundung überwachten Raumes (500x500x1000m) befindet, können Bewegung und Strukturen von Temperatur gleichzeitig in Raum und Zeit erfasst werden. Dieser skalenübergreifende Ansatz erlaubt es, nicht-periodische, nicht gut gemischte und räumlich heterogene Bewegungen der Luft nahe der Erdoberfläche zu erfassen. Die gewonnenen Daten werden mittels neuester stochastischer Auswerteverfahren analysiert, um die (nicht-)turbulenten Bedingungen und deren Durchmischung zu charakterisieren. Der wissenschaftliche Gewinn des Projektes liegt in einem wegweisenden innovativen Ansatz, um Modelle in den Bereichen Strömungsmechanik und Erd-System Wissenschaften zu validieren, und so zu einem verbesserten Verständnis unseres Lebensraums, der Schnittstelle zwischen Land und Atmosphäre, zu führen.

Untersuchungen zur Umweltradioaktivitaet

Untersuchungen zur Bestimmung der Aktivitaetskonzentration in Umweltproben mit Hilfe hochaufloesender Gamma-Spektrometrie. Neben der Gewaehrleistung von hochempfindlichen Messungen steht im Mittelpunkt der Arbeiten die Entwicklung und Anwendung von Berechnungsverfahren, die den Einfluss der Probenzusammensetzung und der Probenform auf das erzielte Messergebnis beruecksichtigen. Die Bereitstellung problemangepasster Rechnerprogramme soll die Aktivitaetskonzentrationsbestimmung unterschiedlicher Radionuklide in verschiedenartigen Proben (Form, Dichte, Zusammensetzung) ermoeglichen, ohne dass zuvor aufwendige, spezielle Kalibrierungsmessungen durchgefuehrt werden muessen. Untersuchungen zur Umgebungsdosimetrie mit Thermolumineszenzdetektoren zur Feststellung der Umweltradioaktivitaet. Durch den Einsatz neuer, hochempfindlicher Materialien (z.B. LiF:Mg, Cu, P, CaF2:Cu) sollen genaue Dosisbestimmungen bei kurzen Expositionszeiten erreicht und damit ein einfaches Verfahren fuer Kontrollmessungen und Routineueberwachungen entwickelt werden. Durch die Bereitstellung von Korrektionsprogrammen soll die Moeglichkeit geschaffen werden, auch im Falle unterschiedlicher Photonenenergien der einfallenden Strahlung und bei Messungen mit Detektoren stark energieabhaengiger TL-Response sichere Angaben der Aequivalentdosis zu ermoeglichen.

Klimaerwärmung und Kohlenstoffdynamik von Waldböden

Wie sich die Klimaerwärmung auf den organischen Kohlenstoff (C) Pool von Waldböden auswirkt ist noch nicht vollständig geklärt. Höhere Temperaturen regen die Aktivität von Mikroorganismen an. Es wird mehr organischer C umgesetzt und die CO2-Emissionen aus dem Boden (Bodenatmung) steigen. Wie stark die Bodenatmung zunimmt, hängt von der verfügbaren Menge des organischen C (Vorrat und Eintrag), dessen chemischer Qualität und der Reaktion der Mikroorganismen auf die Temperaturerhöhung ab. Die Auswirkungen der Erwärmung verändern sich mit der Zeit. Durch die erhöhte Aktivität der Mikroben kann etwa die Verfügbarkeit von leicht abbaubarer org. Substanz mit der Zeit abnehmen. Die Struktur der Mikroorganismen-Gemeinschaft kann sich mit der Zeit verändern bzw. Mikroorganismen können sich physiologisch an höhere Temperaturen anpassen. Beide Prozesse, laufen langsam ab. Kurzfristige Reaktionen auf die Erwärmung weichen daher von langfristigen ab. Um die langfristigen Auswirkungen der Erwärmung auf den C-Kreislauf von Wäldern zuverlässig abschätzen zu können, sind experimentelle Simulationen im Freiland erforderlich. Im Erwärmungs-Experiment 'Achenkirch' wird seit 2004 ein Bodentemperaturanstieg um 4 C simuliert. Speziell in den ersten Jahren (2004 - 2007) hat die experimentelle Erwärmung den CO2 Ausstoß aus dem Waldboden stark erhöht (+40Prozent). In den letzten Jahren (2008, 2009) war ein leichter Rückgang des Effekts bemerkbar. Eine Fortführung der Erwärmung ermöglicht uns, langfristige Auswirkungen auf den C-Vorrat im Boden abzuschätzen. Das Experiment ist eines von sehr wenigen in situ Erwärmungs-Experimenten weltweit, in welchem langfristige Trends erforscht werden. Die Verlängerung des Erwärmungsexperiments ermöglicht uns C-Pool Veränderungen auf zweierlei Arten abzuschätzen, (i) aus den gemessenen C-Flüssen der letzten 9 Jahre, und (ii) aus dem Vergleich der C-Pools auf erwärmten und unbehandelten Flächen (2013). Durch die Integration von oberirdischen Komponenten kann eine langfristige Abschätzung der Folgen der Erwärmung auf C-Flüsse und Pools des Wald-Ökosystems erfolgen - eine Grundlage für künftige Kyoto Berichterstattung. Um funktionelle Abläufe im Boden besser zu verstehen ist es nötig, die heterogene organische Bodensubstanz in labile und stabile Fraktionen aufzutrennen. Die org. Substanz wird physikalisch fraktioniert und die Umsatzzeit der einzelnen Fraktionen wird mittels Radiokarbon (14C) Messung bestimmt. Die Umsatzzeiten der einzelnen Fraktionen geben Aufschluss über die Auswirkungen der Erwärmung auf labile und rekalzitrante C-Pools. Durch eine detailierte chemische Analyse der verschiedenen org. C-Pools sollen neue Einblicke in die Funktionsweise des Boden-C Kreislaufs gewonnen werden. usw.

Überwachung der Umweltradioaktivität (Luft, Niederschläge, Gewässer, Erdboden, Gras, Lebensmittel etc.)

Überwachung der Umweltradioaktivität aus künstlichen und natürlichen Quellen: Luft, Gewässer, Niederschläge, Erdboden, Gras, Lebensmittel, Strahlendosen, in-situ-Messungen Überwachung von Kernanlagen, Betrieben und Spitälern die radioaktive Stoffe verwenden Erfassung der natürlichen Radioaktivität etc. Koordination des nationalen Überwachungsprogrammes Sammlung, Auswertung und Veröffentlichung der Daten sowie Ermittlung der Strahlendosen der Bevölkerung aus künstlichen und natürlichen Strahlenquellen Weiterentwicklung der Überwachungs- und Messverfahren die Ergebnisse werden jährlich vom Amt (als Print) und auf dem Internet veröffentlicht.

Understanding the ecology and virulence of Legionella spp. populations in freshwater systems in Germany, Palestine and Israel

Bacteria of the genus Legionella cause waterborne infections resulting in severe pneumonia. In Europe, 70Prozent of the cases of the so-called Legionnaires disease (LD) originate from strains of L. pneumophila serogroup (Sg) 1, 20Prozent from other L. pneumophila serotypes and 10Prozent from other Legionella species. In contrast, in the Middle East most legionella infections are due to L. pneumophila Sg3. The overall objective of this project is to advance current knowledge on the ecology of legionella in freshwater systems, the environmental factors affecting their occurrence, virulence potential and infectivity and to understand their transmission to humans. We will analyze the major environmental factors regulating the abundance of legionella, such as grazing and assimable dissolved organic carbon, because the occurrence of these heterotrophic bacteria in aquatic habitats is highly dependent on these factors. We will use an integrated molecular approach based on highresolution diagnostics of environmental samples and clinical isolates to determine the abundance, activity and virulence potential of Legionella populations in-situ. Combining environmental and molecular epidemiological data, we aim at understanding the link between ecology and population dynamics of legionella and cases of LD. The project will result in a novel understanding of the molecular epidemiology of legionella and provide new surveillance tools and strategies to prevent LD.

Dynamics of soil structure and physical soil functions and their importance for the acquisition of nutrients from the subsoil

Subsoils are an often neglected nutrient source for crops. The mobilisation and use of this potential nutrient source is an important factor in sustainable land use. Nutrient accessibility, release, and transport are strongly dependent on soil structure and its dynamics controlled by spatiotemporally variable physical functions of the pore network. A well structured soil, for example, with numerous interconnected continuous biopores will enhance root growth and oxygen availability and hence nutrient acquisition. In contrast to soils with a poorly developed structure nutrient acquisition is limited by restricted root growth and reduced aeration. The goal of this research project is to investigate different preceding crops and crop sequences in developing characteristic biopore systems in the subsoil and to elaborate their effect on the functional performance of pore networks with respect to nutrient acquisition. The main research question in this context is how soil structure evolves during cultivation of different plant species and how structure formation influences the interaction of physical (water and oxygen transport, shrinking-swelling) biological (microbial activity, root growth) and geochemical processes (e.g. by creating new accessible reaction interfaces). In order to study and quantify pore network architectures non-invasively and in three dimensions X-ray computed microtomography and 3D image analysis algorithms will be employed. The results will be correlated with small- and mesoscale physical/chemical properties obtained from in situ microsensor (oxygen partial pressure, redox potential, oxygen diffusion rate) and bulk soil measurements (transport functions, stress-strain relationships) of the same samples. This will further our process understanding regarding the ability of various crop sequences to form biopore systems which enhance nutrient acquisition from the subsoil by generating pore network architectures with an efficient interaction of physical, biological and geochemical processes.

Der Einfluss von bodennaher Turbulenz auf den Transport von Tracern in marinen Becken (ROBOTRACE)

Mit diesem Antrag sollen die physikalischen Prozesse identifiziert, analysiert und quantifiziert werden, die zu dem Austausch von gelösten Substanzen zwischen der Sediment-Wasser Grenzschicht, innerhalb der turbulenten Bodengrenzschicht (bottom boundary layer, BBL) und dem schwach turbulenten Inneren von geschichteten Becken beitragen. Im Fokus stehen dabei der Effekt von geneigten Hängen, an denen die Austauschprozesse durch das Zusammenwirken des Wiederaufbaus der Bodengrenzschichtschichtung , der Turbulenz innerhalb der BBL und sub-mesoskaligen Prozessen, von denen angenommen wird, dass sie den lateralen Austauschraten von Wasser bestimmen, verkompliziert werden. Diese Prozesse werden durch einen kombinierten Ansatz aus Feldmessungen und numerischer Modellierung untersucht. Insbesondere wird sich das Projekt dabei auf den Sediment-Wasser Austausch von Schwefelwasserstoff und Sauerstoff fokussieren, der in Situ mit Hilfe eines Eddy-Korrelationsmessgerätes als auch mit einem Mikroprofilsystem gemessen wird. Diese Messung wird durch ozeanographische Standardmessungen ergänzt, als auch durch Schiffs- und Verankerungsbasierte Turbulenzmessungen. Dieser Datensatz ist neuartig durch die Kombination von (A) der Sediment-Wasserflüsse von Sauerstoff und Schwefelwasserstoff und (B) der Turbulenzmessungen innerhalb der BBL und des Beckeninneren. Zusätzlich zu den Feldmessungen ist eine numerische Modellierung auf der Basis eines einfachen Sedimentmodells in Kombination mit einer Parametrisierung der Transportprozesse an der Sediment-Wassergrenzschicht geplant. Dieses Modell wird in idealisierten, eindimensionalen Parameterstudien, sowie in einem zweidimensionalen Setup verwendet, welches sich auf die Austauschprozesse der Bodengrenzschicht mit dem Beckeninneren konzentriert. Für die Untersuchung von dreidimensionalen Strukturen wie Eddies auf den Sauerstoff/Schwefelwasserstofftransport wird ein voll dreidimensionales realistisches Modell der zentralen Ostsee angewendet.

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Erhaltung und Nachzucht seltener Baum- und Straucharten

Ziel des Projektes ist die langfristige Sicherung und Erhaltung von Vorkommen seltener Baumarten, sowie die Etablierung neuer/verjüngter Vorkommen an geeigneten Standorten. Zunächst erfolgt die Evaluierung, Auswahl und Beerntung erhaltungswürdiger Bäume aus südwest-deutschen Wald- und Feldvorkommen (insbes. Elsbeere, Speierling, Wildapfel, Wildbirne, Schwarzpappel, Ulme, Walnuss und Eibe; außerdem Straucharten) mit entsprechender Dokumentation. Anschließend erfolgt eine vegetative und generative Weitervermehrung zum Aufbau von Erhaltungs-Klonsammlungen bzw. zum Aufbau von Erhaltungs-Samenplantagen, (ex-situ Generhaltung). Parallel dazu werden o.g. seltene Baumarten vegetativ und generativ mit 1- bis 3-jähriger Kulturzeit nachgezogen und an interessierte bzw. am Evaluierungsprozess beteiligte Forstämter abgegeben (in-situ Generhaltung) und dort langfristig weiterbeobachtet.

1 2 3 4 5175 176 177