Organisms in intertidal zones experience fluctuations in environmental stressors such as hypoxia and temperature. These stressors and their fluctuations often appear in combination. Combination of stressors can have different effects compared to single stressors. In this study, we investigate the physiological effects of intermittent hypoxia in combination with different temperature regimes on the Pacific Oyster Crassostrea (Magallana) gigas. The oysters were exposed to hypoxic cycles (12h hypoxia by emersion/12h submersion) at normal (15°C), elevated (30°C) or fluctuating (15°C submersion/30°C emersion) temperature for 10 days. After the last submersion phase, the gills and digestive gland were sampled. We measured markers for bioenergetics and redox-balance in the gills and digestive gland using colorimetric methods as well as a set of metabolites (predominantly amino acids, osmolytes, anaerobic end products and energetic metabolites) in the gills using LC-MS/MS. Oysters kept submerged for up to 10 days were used as controls.
Objective: The multidisciplinary research teams in this consortium have played lead roles in establishing that fetal and childhood periods are vulnerable to environmental disruption leading to common reproductive disorders. This proposal will investigate: (1) connections between normal/abnormal perinatal reproductive development and maturation of reproductive function at puberty and in adulthood; (2) systemic gene-environment interactions underlying reproductive disorders taking account of genetic susceptibility, multiple exposures (e.g. mixtures of environmental chemicals) and their timing (perinatal, peripubertal, adult); (3) connection between perinatal reproductive development and later obesity/metabolic disorders. To achieve this we will utilize large cohorts generated in previous EU projects and collect new data from these on reproductive maturation and adult function. Existing genomic and proteomics data, exposure data for greater than 100 potentially toxic environmental chemicals, lifestyle, dietary and medical history information will be analysed using integrative systems biology approaches to pinpoint critical (interacting) factors influencing development.
Objective: This project concerns the first large-scale application of the full range of omics technologies in a population study aiming at a) the discovery and validation of novel biomarkers predictive of increased risks of a number of chronic diseases, b) the exploration of the association of such biomarkers with environmental exposures, including high-priority pollutants and emerging exposures, and c) the discovery and validation of biomarkers of exposure to the above and other high-priority environmental exposures. The project will utilise three existing prospective cohorts. Cancer-related -omics biomarkers will be developed using a case-control study nested within 2 cohorts which contain biosamples collected prior to disease diagnosis, exposure and followup health information. Biomarkers will be compared in 600 breast cancer cases, 300 NHL cases and equal numbers of matched controls, to evaluate their risk predictivity. Biomarkers of chronic diseases which establish themselves in early childhood but persist into adult life will be evaluated using a mother-child cohort. Biosamples collected from 600 children at birth and at ages 2 and 4 years will be analysed and results compared with clinical indices obtained at age 4. Thanks to the availability of repeat samples, collected over a wide range of time intervals, the intra-individual variation of biomarkers and their relationship with disease progression will be evaluated. Biomarker search will utilize state-of-the-art metabonomics, epigenomics, proteomics and transcriptomics, in combination with advanced bioinformatics and systems biology tools. It will also include technical validation of -omics technology s utilisation with biobank samples. Exposure assessment will utilize exposure biomarkers, questionnaires, modelling and GIS technology. Additional data on exposure, biomarkers (including SNP data) and health indices, available through other projects, will be utilised, thus generating substantial added value.