Das Projekt "Forschergruppe (FOR) 1740: Ein neuer Ansatz für verbesserte Abschätzungen des atlantischen Frischwasserhaushalts und von Frischwassertransporten als Teil des globalen Wasserkreislaufs, Variation of the fresh water in the western Nordic Seas" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.
Das Projekt "Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung.Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
Das Projekt "Residence times across scales: from plot to catchment scale" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Centre de Recherche Public Gabriel Lippmann, Departement Environnement et Agro-Biotechnologies.Residence times is a key signature to characterize flow and transport at all temporal and spatial scales in different hydrological compartments. It is assumed that the spatial organisation of the landscape controls space-time organisation of the water cycle and related processes and hence the residence time. Combining flux and residence concentration data of natural tracers in water, stable isotopes, and artificial tracers will allow us to predict residence time and flow pathways in the different hydrological compartments as well as integrative for entire watersheds. We will investigate with different methods the fingerprint of hydrological processes found in the signal of isotopic composition and natural and artificial tracers of soil, ground and stream water in space and time. The temporal variability of isotopes in soil water, groundwater and stream water will be combined to benchmark transport and flow models and to derive a new functional form of short to long-term transit time distributions. The spatial patterns of stable isotopes in the saturated and unsaturated zone will be used to derive long-term flow pathways, mixing patterns and the proportion of evaporation to transpiration. Artificial tracer experiments using salt and electric resistivities will vizualize and quantify internal flow pathways in particular preferential flow pathways.
Das Projekt "Non-destructive characterization and monitoring of root structure and function at the rhizotron and field scale using spectral electrical impedance tomography (ImpTom)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Eidgenössische Technische Hochschule Zürich, Departement Agrar- und Lebensmittelwissenschaften, Institut für Nutztierwissenschaften, Gruppe Physiologie und Tierhaltung.This subproject aims at the development of spectral electrical impedance tomography (EIT) as a non-destructive tool for the imaging, characterization and monitoring of root structure and function in the subsoil at the field scale. The approach takes advantage of the capacitive properties of the soil-root interface associated with induced electrical polarization processes at the root membrane. These give rise to a characteristic electrical signature (impedance spectrum), which is measurable in an imaging framework using EIT. In the first project phase, the methodology is developed by means of controlled rhizotron experiments in the laboratory. The goal is to establish quantitative relationships between characteristics of the measured impedance spectra and parameters describing root system morphology, root growth and activity in dependence on root type, soil type and structure (with/without biopores), as well as ambient conditions. Parallel to this work, sophisticated EIT inversion algorithms, which take the natural characteristics of root system architecture into account when solving the inherent inverse problem, will be developed and tested in numerical experiments. Thus the project will provide an understanding of electrical impedance spectra in terms of root structure and function, as well as specifically adapted EIT inversion algorithms for the imaging and monitoring of root dynamics. The method will be applied at the field scale (central field trial in Klein-Altendorf), where non-destructive tools for the imaging and monitoring of subsoil root dynamics are strongly desired, but at present still lacking.
Das Projekt "Konsistente Zeitreihen von Ozeanmassenvariationen aus Messungen von LEO-Potentialfeldmissionen (CONTIM-2)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Fachbereich Klimawissenschaften.Neben der globale Temperatur ist der Meeresspiegel eine maßgebliche Kenngröße für das Klima der Erde und seinen Wandel. Ein Anstieg des Meeresspiegels hat vielfältige Folgen für die Gesellschaft. Deshalb streben wir eine datengestützte Analyse der verschiedenen Ursachen von Meeresspiegelschwankungen an, um so eine wichtige Grundlage für Wissenschaft und politische Entscheidungen zu liefern. In diesem Projekt konzentrieren wir uns auf Änderungen der Ozeanmasse, die direkt proportional zum Ozeanbodendruck ist.Räumliche Variationen des Ozeanbodendrucks, die auf Zeitskalen von Monaten bis Jahrzehnten auftreten, können sowohl aus windinduzierter Variabilität wie auch aus baroklinen Prozessen resultieren, ihr Entstehen ist aber bis heute nicht vollständig verstanden. Viele Prozesse im tiefen Ozean lassen sich aber nur erklären wenn nicht nur die Meeresoberflächenhöhe (aus Radarsatellitenmessungen) und die thermisch bedingte oder aus Salinitätsänderungen resultierende Variabilität der oberen Ozeanschichten (z.B. mit Hilfe von ARGO-Messungen) erfasst werden, sondern auch der Bodendruck. So kann eine Erwärmung des tiefen Ozeans, die in vielen Studien für eine Verlangsamung der globalen Erwärmung verantwortlich gemacht wird, nur erklärt werden wenn alle diese Elemente betrachtet werden. Die GRACE-Satellitenmission hat wesentliche neue Erkenntnisse zu ozeanischen Massenvariationen beigetragen, wird aber nur noch wenige Daten liefern. Basierend auf Ergebnissen der vorangegangenen Förderperiode, soll in CONTIM-2 Expertise zur präzisen Bahnbestimmung von SWARM, CHAMP und sonstige Erdsatelliten, zur Modellierung des zeitvariablen Schwerefeldes und zur gemeinsamen Inversion verschiedenartiger Daten, sowie zur physikalischen Modellierung der Ozeane kombiniert werden, um eine konsistente Zeitreihe von Ozeanmassenvariationen über den GRACE-Zeitraum hinaus zu erzeugen und einen Anschluss an die GRACE-FO Mission zu gewährleisten. Dabei wird die präzise Bahnbestimmung für niedrigfliegende Satelliten, insbesondere SWARM, mit Hilfe von GPS-Empfängern unter schwierigen ionosphärischen Bedingungen eine Rolle spielen. Damit wollen wir einen wichtigen Beitrag zum Verständnis von Ozeanvariabilität, Meeresspiegel und Erwärmung der Meere schaffen.
Das Projekt "Hydrogeological and hydrochemical modelling of density-driven flow in the Tiberias Basin, in particular between Ha'on and Tiberias Regions, Jordan Valley" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Bundesamt für die Sicherheit der nuklearen Entsorgung.The aim of the current research is to identify regional sources and trans-boundary flow leading to the observed salinity of Lake Tiberias (LT) -also known as the Sea of Galilee or Lake Kinneret-, and its surroundings, which is considered the only natural surface fresh water reservoir of the area. The current study will include all sources of brines in the Tiberias Basin (TB) with specific emphasis of the relationship between the brines from the Ha'on and Tiberias Regions (HTR).The tasks will be achieved by a multidisciplinary approach involving: (i) numerical modelling of density-driven flow processes (i.e., coupled heat and dissolution of evaporites), (ii) hydrochemical studies, supplemented by investigations of subsurface structures.(i) Numerical modelling will be carried out by applying the commercial software FEFLOW® (WASY, GmbH) complemented with the open source code OpenGeoSys developed at the UFZ of Leipzig (Wang et al., 2009). The final goal is to build a 3D regional-scale model of density-driven flow that will result in: (1) revealing the different interactions between fresh groundwater and natural salinity sources (2) elucidate the driving mechanisms of natural brines and brackish water body's movements.(ii) Hydrochemical study will include major, minor and, if possible, rare earth elements (REE) as well as isotope studies. The samples will be analysed at the FU Berlin and UFZ Halle laboratories. Geochemical data interpretation and inverse modelling will be supported by PHREEQC. Hydrochemical field investigations will be carried out in Tiberias basin and its enclosing heights, i.e. the Golan, Eastern Galilee and northern Ajloun in order to search for indications of the presence of deep, relic saline groundwater infested by the inferred Ha'on mother-brine. The current approaches will be supplemented by seismic and statistical data analysis as well as GIS software applications for the definition of the subsurface structures. The key research challenges are: building a 3D structural model of selected regions of TB, adapting both structural and hydrochemical data to the numerical requirements of the model; calibrating the 3D regional-scale model with observational data. The results of this work are expected to establish suitable water-management strategies for the exploitation of freshwater from the lake and from the adjacent aquifers while reducing salinization processes induced by both local and regional brines.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Basales Schelfeisschmelzen und dessen Beitrag zur Bodenwasserbildung und ozeanischen Zirkulation in Antarktischen Kontinentalrändern unter sich verändernden Umweltbedingungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Umweltphysik, Abteilung Ozeanographie.Die aktuellen basalen Schmelzraten der Eisschelfe im Weddellmeer und deren möglichen zukünftigen Entwicklungen unter sich ändernden Klimabedingungen sind noch nicht vollständig verstanden. Um die damit verbundene Zusammensetzung und die Bildungsraten von Antarktischem Bodenwasser und deren Variabilität sowie den Beitrag zur globalen ozeanischen Zirkulation besser untersuchen und verstehen zu können, werden dringend mehr Spurenstoff-Beobachtungen gebraucht. Die Ziele dieses Projektes sind: A) Eine verbesserte, aktuelle Quantifizierung basaler Schmelzwasserinventare und basaler Schmelzraten der Schelfeise in der westlichen (Larsen Eisschelf) und südlichen (Filchner Eisschelf) Weddellsee, um zukünftige Veränderungen erfassen zu können. B) Eine Untersuchung, auf welchen Pfaden sich das basale Schmelzwasser weiter ausbreitet und wie es zur Bildung von Antarktischem Bodenwasser beiträgt sowie eine Quantifizierung der aktuellen Bildungsraten von Antarktischem Bodenwasser. C) Die Suche nach Hinweisen auf lokale Änderungen und zeitliche Entwicklungen basaler Schmelzprozesse und der Bildung von Antarktischem Bodenwasser (heute eisfreie Gebiete Larsen A und B, noch eisbedecktes Larsen C und Filchner, oder veränderliche Eigenschaften oder Zirkulation angrenzender Wassermassen). D) Eine Untersuchung, wie lokale Prozesse und deren Variabilität mit großskaligen Prozessen im Zusammenhang stehen (z.B. den beobachteten Änderungen der Eigenschaften von Antarktischem Bodenwasser, Erwärmung, Aussüßung, Zunahme des Alters bzw. Abnahme der Erneuerung, Verlangsamung der Aufnahme anthropogenen Kohlenstoffs, Abnehmende Volumina, Trends). Spurengasmessungen werden wesentlich dazu beitragen, das basale Schmelzen (stabile Edelgasisotope (3He, 4He, Ne) für basale Schmelzwasserquantifizierung) und Schmelzraten und Bodenwasserbildungsraten (FCKWs für Transportzeitskalen, Bildungsraten und die damit verbundene Aufnahme anthropogenen Kohlenstoffs) und deren Variabilität zu untersuchen und zu bestimmen. Diese Ziele tragen zu drei Leitzielen des SPP 1158 bei: * Dynamik der Komponenten des Klimasystems * Reaktion auf veränderliche Umweltbedingungen * (Die Weddellsee als) Verbindung zu niedrigeren Breiten
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Molecular composition of Southern Ocean dissolved organic matter and its relation to structure and activity of prevailing microbial communities" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres.
Das Projekt "3D tomography for SCIAMACHY limb and nadir measurements: retrieval of stratospheric NO2, BrO and OClO profiles and their application for the investigation of stratospheric chemistry" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Chemie (Otto-Hahn-Institut).Satellite measurements strongly contribute to the understanding of the processes related to stratospheric ozone loss, e.g. by global and long term monitoring of ozone and its depleting substances. For instance, measurements performed in limb geometry by SCIAMACHY on ENVISAT largely improved the knowledge about the vertical distribution of species like BrO and OClO only recently. However, there are still important open questions, like e.g. the chlorine activation processes on different kinds of aerosols and polar stratospheric clouds. Also, the role of very short lived species in the stratospheric bromine budget or the effects of a possible enhancement of the Brewer-Dobson circulation are not fully understood.Globally, the vertical distribution of ozone depleting species varies significantly in space and time due to solar illumination, atmospheric chemistry and transport. Especially strong gradients occur near the twilight zone or across stratospheric transport barriers (polar vortex boundary, subtropical transport barriers). These regions are of particular importance for chemistry and transport of the lower stratosphere and upper troposphere, since they separate air masses on large scales but also enable exchange between them.Standard 1-D profile retrievals, which assume horizontal homogeneity, result in large systematic biases due to neglecting the effect of horizontal gradients on the measurement. We propose to develop, improve and apply a tomographic profile retrieval algorithm, which optimally combines the information provided by the SCIAMACHY limb and nadir measurements. An improved global dataset of 3D stratospheric profiles for NO2, BrO and OClO for the 10 years of the SCIAMACHY mission (2002-2012) will be developed, compared to atmospheric chemistry simulations and applied to selected questions of atmospheric science. The dataset developed in this project will be very useful for investigating the complex interplay of stratospheric chemistry and transport processes, and will help to reduce the uncertainties in the distribution of ozone depleting species, in particular for regions with large horizontal inhomogeneity.
Das Projekt "Modellkopplung und komplexe Strukturen, Model coupling and complex structures - Investigating transfer fluxes induced by turbulent free flow and affected by multiphase processes in porous media" wird/wurde gefördert durch: Universität Stuttgart, International Research Training Group NUPUS. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.Flow and transport processes in domains composed of a porous medium and an adjacent free-flow region appear in a wide range of industrial, medical and environmental applications. Our focus is on evaporation from unsaturated soils under influence of a turbulent free flow. The modeling of such coupled systems is a challenging task especially at the interface of the two domains. In preliminary work a REV-scale model has been developed, which couples the Navier-Stokes equation for the free flow with the Darcy equation for the porous-medium flow. It is possible to simulate the evaporation processes for non-isothermal, laminar conditions and a multiphase, multicomponent flow. However, there is a discrepancy between the simulated evaporation rates and rates which have been measured in lab experiments. Therefore the model will be extended with RANS turbulence models. The vision is to develop a model which can reproduce the complex interaction between the two domains and predict the exchange fluxes. This is achieved with a numerical stable description for the turbulent free flow and by gaining inside into the complex processes at the interface. Different scenarios will be analyzed with respect to the required model complexity aiming at a 'intelligent interface' description and an improved modeling on the field scale.
Origin | Count |
---|---|
Bund | 21 |
Type | Count |
---|---|
Förderprogramm | 21 |
License | Count |
---|---|
offen | 21 |
Language | Count |
---|---|
Deutsch | 5 |
Englisch | 20 |
Resource type | Count |
---|---|
Keine | 17 |
Webseite | 4 |
Topic | Count |
---|---|
Boden | 16 |
Lebewesen & Lebensräume | 18 |
Luft | 15 |
Mensch & Umwelt | 21 |
Wasser | 16 |
Weitere | 21 |