API src

Found 52 results.

Digital Volume Correlation (DVC) data from an analogue experiment exploring kinematic coupling of brittle and viscous deformation

This dataset includes volumetric data sets from a Digital Volume Correlation (DVC) analysis for recreating images of a re-analyzed analogue models previously presented in (Zwaan et al., 2018). Using a brittle-viscous two-layer setup, this experiment focused on the evolution of a rift-pass structure. On top of the viscous layer, two viscous seeds are placed with a right-stepping stair-case offset to simulate two propagating rift segments, confining a central rift-pass block (Fig. 1). The selected model was analyzed by means of Digital Volume Correlation (DVC) applied on X-Ray computed tomography (XRCT) volumes. The data set includes DVC data in the form of .mat files for incremental (i.e., 20 min intervals) and cumulative displacement components. In addition, this dataset provides a MATLAB script for 1) recreating volumetric displacement sets of subsequent time steps 2) calculating finite stretches and 3) rigid-body rotations. The used experiment was performed at the Tectonic Modelling Laboratory of the University of Bern (UB). DVC analysis was performed at the Royal Holloway University London (RHUL). The model consists of a two-layer brittle-viscous set up with a total thickness of 8 cm and the set up lies on top of a 5 cm thick foam-plexiglass base with a length and width of 800 mm by 305 mm, respectively. Before model construction, the foam-plexiglass assemblage is placed between longitudinal side walls and expands during the course of the experiment as the mobile sidewalls move apart. The applied divergence velocity is 7.5 mm/h and with has an orthogonal direction with respect to the viscous seeds. This results in a maximum displacement of 30 mm after a total run time of 4h. Detailed descriptions of the experiment, mechanical properties as well as monitoring techniques can be found in Schmid et al. (2024).

A database of R-R-R triple junction analogue and numerical models

This dataset presents the raw data from two experimental series of analogue models and four numerical models performed to investigate Rift-Rift-Rift triple junction dynamics, supporting the modelling results described in the submitted paper. Numerical models were run in order to support the outcomes obtained from the analogue models. Our experimental series tested the case of a totally symmetric RRR junction (with rift branch angles trending at 120° and direction of stretching similarly trending at 120°; SY Series) or a less symmetric triple junction (with rift branches trending at 120° but with one of these experiencing orthogonal extension; OR Series), and testing the role of a single or two phases of extension coupled with effect of differential velocities between the three moving plates. An overview of the performed analogue and numerical models is provided in Table 1. Analogue models have been analysed quantitatively by means of photogrammetric reconstruction of Digital Elevation Model (DEM) used for 3D quantification of the deformation, and top-view photo analysis for qualitative descriptions. The analogue materials used in the setup of these models are described in Montanari et al. (2017), Del Ventisette et al. (2019) and Maestrelli et al. (2020). Numerical models were run with the finite element software ASPECT (e.g., Kronbichler et al., 2012; Heister et al., 2017; Rose et al., 2017).

Particle image velocimetry data from seismotectonic analog models focusing on the role of seamount subduction on megathrust seismicity

This dataset provides the surface velocity fields derived with MatPIV (open-source Matlab toolbox for Particle Image Velocimetry; Sveen 2004) of three seismotectonic analog models (e.g., Rosenau et al., 2017) performed to investigate the role of geometry and friction of a single subducting seamount on the seismogenic behavior of the megathrust. Model 1 has a seamount covered by sandpaper (i.e., high friction) that is placed at 1/2 of the trench-parallel length of the seismogenic zone. Model 3 has the same geometry of model 1, but the seamount is in direct contact with the gelatin (i.e., not covered by sandpaper, hence low friction). Model 5 has a low friction patch (i.e., no geometry) that is placed again at 1/2 of the trench-parallel length of the seismogenic zone. Together with the surface velocity fields, we also provide Matlab scripts for visualization. A more detailed description of the experimental setup, configuration of the models and materials can be found in Menichelli et al. (submitted), to which this dataset is supplementary. Our seismotectonic models represent a downscaled subduction zone (1 cm in the model corresponds to 6.4 km in nature; Rosenau et al., 2017). The experimental setup consists of a 60 x 34 cm2 Plexiglass box with a 10°-dipping aluminum basal plate that moves downward with a constant velocity of 0.01 cm/s, analog of the subducting plate. The overriding plate is represented by an elastic wedge of 2.5 wt% pigskin gelatin at T = 10 °C (Di Giuseppe et al., 2009). The seismogenic zone of the megathrust is simulated using a rectangular sandpaper patch (Corbi et al., 2013), with a downdip width of 16 cm and located 31 and 47 cm from the backstop. This corresponds to a 100-km-wide seismogenic zone extending over a depth interval between 15 and 34 km. The updip and down dip aseismic regions of the megathrust are simulated by plastic sheets that are fixed on the setup frame and not subject to subduction (Corbi et al., 2013). A 3D-printed PLA seamount is placed on the seismogenic zone (e.g., Van Rijsingen et al., 2019). The seamount has a height of 6.28 mm and a diagonal length of 94 mm, corresponding to 4 km and 60 km in nature, respectively. These dimensions scale well-known seamounts, such as the Joban Seamount chain in the Japan Trench or the Louisville seamount chain in the Tonga-Kermadec Trench. Experiments were monitored with a CCD camera that acquired a sequence of high-resolution top-view images (1600 x 1200 pixels2, 8 bit, 256 gray levels) at 7.5 fps for the entire duration of the experiment (i.e., ca. 24 minutes). Images are processed with Particle Image Velocimetry (PIV; Adam et al., 2005) using the open-source Matlab toolbox MatPIV (Sveen, 2004). MatPIV provides the velocity field between two consecutive frames, measured at the surface of the model. The velocity field was then used as input to identify analog seismic events using the open-source Matlab function findpeak. The threshold used was 0.1 cm/s. Once earthquakes were identified, we derived their source parameters such as seismic slip, magnitude, and recurrence time following Corbi et al. (2017) and van Rijsingen et al. (2019).

Granular Healing - Python module associated to the 2022 GeoMod material benchmark

The software is provided as an executable python module. The software automatically analyzes the files present in the data publication. The results are saved in the form of the images presented in the main publication. Each figure is implemented as a dedicated function that first loads the necessary data, then does some processing steps, such as curve fitting, and then plots the outputs in the desired layout. A 'main' function calls all figure functions sequentially. However, the packages is modular so that each individual plot has a standalone function which could be used with other, similarly structured data. Several submodules provide additional data for plotting, e.g. the 'groups' submodule that contains naming schemes and the densities for all samples.

A database of centrifuge analogue models testing the influence of inherited brittle fabrics on continental rifting

This dataset presents the raw data of an experimental series of analogue models performed to investigate the influence of inherited brittle fabrics on narrow continental rifting. This model series was performed to test the influence of brittle pre-existing fabrics on the rifting deformation by cutting the brittle layer at different orientations with respect to the extension direction. An overview of the experimental series is shown in Table 1. In this dataset we provide four different types of data, that can serve as supporting material and for further analysis: 1) The top-view photos, taken at different steps and showing the deformation process of each model; they can be used to interpret the geometrical characteristics of rift-related faults; 2) Digital Elevation Models (DEMs) used to reconstruct the 3D deformation of the performed analogue models, allowing for quantitative analysis of the fault pattern. 3) Short movies built from top-view photos which help to visualize the evolution of model deformation; 4) line-drawing of fault and fracture patters to be used for fault statistical quantification. Further details on the modelling strategy and setup can be found in Corti (2012), Maestrelli et al. (2020), Molnar et al. (2020), Philippon et al. (2015), Zwaan et al. (2021) and in the publication associated with this dataset. Materials used for these analogue models were described in Montanari et al. (2017) Del Ventisette et al. (2019) and Zwaan et al. (2020).

Rheometric Analysis of Viscous Material Mixtures Used in the Tectonic Laboratory (TecLab) at Utrecht University, Netherlands

This dataset contains measurements of viscous and viscoelastic materials that are used for analogue modelling. Proper density and viscosity scaling of ductile layers in the crust and lithosphere, requires materials like Polydimethylsiloxane (PDMS), to be mixed with fillers and low viscoity silicone oils. Changing the filler content and filler material, the density, viscosity and power-law coefficient can be tuned according to the requirements. All materials contain a large amount of PDMS and all but one a small amount of an additional silicone oil. Adding plasticine or barium sulfate lead to shear thinning rheologies with power-law exponents of p<0.95. Adding corundum powder only has a minor effect on the power-law exponent. Some mixtures also have an apparent yield point but all are in the liquid state in the tested range. In general, the rheologies of the materials are very complex and in some cases strongly temperature dependent. However, in the narrow range of relevant strain rates, the behaviour is well defined by a power-law relation and thus found suitable for simulating ductile layers in crust and lithosphere.

Laboratory model data from experiments on fragmenting analogue rock avalanches

This data set includes various laboratory model data derived from analogue rock avalanche experiments on the role of fragmentation on runout behavior. Detailed descriptions of the experiments and monitoring and analysis techniques can be found in Haug et al. (submitted) to which this data set is supplementary. The data presented here consist of movies showing key avalanche experiments and kinematic data characterizing the runout behavior derived from 157 experiments.

Rheology of glucose syrup from the Tectonic Modelling Lab (TecLab) of the University of Bern (CH)

This dataset provides results from rheological tests of glucose syrup from two suppliers tested within the EPOS Multi-scale Laboratories (MSL) trans-national access (TNA) program 2019 at the Laboratory of Experimental Tectonics (LET), Univ. Roma TRE, Italy. Syrups Glucowheat 45/81 (GW45) and Glucowheat 60/79 (GW60) are produced by Blattmann Schweiz AG, Switzerland (2019 batch). Syrups GlucoSweet 44 (GS44) and GlucoSweet 62 (GS62) are produced by ADEA (Amidi Destrini ed Affini), Italy (2019 batch) . The four tested glucose syrups are labeled according to their DE value (dextrose equivalent value). For tested products from Blattmann Schweiz AG, the second number refers to the weight percentage of dry substance. Glucose syrup GS44 is used in full lithospheric scale analogue experiments at the Tectonic Modelling Lab (TecLab) at the University of Bern, Switzerland as a low-viscosity material simulating the asthenospheric mantle lithosphere to provide isostatic equilibration. The materials have been analyzed using a MCR301 Rheometer (Anton Paar) equipped with parallel plates geometry and rotational regime . To prevent the evaporation of the samples during the measurements, an external water-lock device has been used.

Ring-shear test data of feldspar sand FS900S used in the Tectonic Modelling Laboratory at the University of Bern (Switzerland)

This dataset provides friction data from ring-shear tests on feldspar sand FS900S used for the simulation of brittle behaviour in crust- and lithosphere-scale analogue experiments at the Tectonic Modelling Laboratory of the University of Bern (Zwaan et al. in prep; Richetti et al. in prep). The materials have been characterized by means of internal friction parameters as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam (Germany). According to our analysis both materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the feldspar sand are μP = 0.65, μD = 0.57, and μR = 0.62, respectively, and the Cohesion of the feldspar sand is in the order of 5-20 Pa. An insignificant rate-weakening of less than 1% per ten-fold rate change is registered for the feldspar sand. Granular healing is also minor.

High-speed digital image correlation data from laboratory subduction megathrust models

This data set includes data derived from high-speed surface displacement observations from analog earthquake experiments. The data consists of surface displacement of the experiment upper plate and slab, slip distribution, and grids of Coulomb Failure Stress (CFS). The surface displacement observations have been captured using a highspeed CMOS (Complementary Metal Oxide Semiconductor) camera (Phantom VEO 640L camera, 12 bit) and processed with LaVision Davis 10 software. Description of the experiments and results regarding the surface displacement observation, Slip distribution, and CFS can be found in Kosari et al. (2022), to which this data set is supplementary. We use an analog seismotectonic scale model approach (Rosenau et al., 2019 and 2017) to generate a catalog of analog megathrust earthquakes. The presented experimental setup is modified from the 3D setup used in Rosenau et al. (2019) and Kosari et al. ( 2020 and 2022). The subduction forearc model wedge is set up in a glass-sided box (1000 mm across strike, 800mm along strike, and 300 mm deep) with a dipping, elastic basal conveyor belt, and a rigid backwall. An elastoplastic sand-rubber mixture (50 vol.% quartz sandG12: 50 vol.% EPDM rubber) is sieved into the setup representing a 240 km long forearc segment from the trench to the volcanic arc. The shallow part of the wedge includes a basal layer of sticky rice grains characterized by unstable stick-slip sliding representing the seismogenic zone. The Stick-slip sliding in rice is governed by a rate-and-state dependent friction law similar to natural rocks. A flat-top (surface slope α=0) wedge overlies rectangular stick-slip patch/es over a 15-degree dipping basal thrust. Two different seismic configurations of the shallow part of the wedge base (the megathrust) represent the depth extent of the seismogenic zone in nature. In the first configuration (homogeneous configuration), a single large rectangular stick-slip patch (Width*Length=200*800 mm) is implemented as the main slip patch (MSP). In the second case (heterogeneous configuration), two square-shaped MSPs (200*200mm) have been emplaced, acting as two medium-size seismogenic asperities surrounded by a salt matrix hosting frequent small events. Slow continuous compression of the wedge by moving the basal conveyor belt at a speed velocity of 0.05 mm/s simulates plate convergence and results in the quasi-periodic nucleation of quasi-periodic stick-slip events (analog earthquakes) within the sticky-rice layer. The wedge responds elastically to these basal slip events, similar to crustal rebound during natural subduction megathrust earthquakes.

1 2 3 4 5 6