API src

Found 359 results.

Related terms

CFK-Recycling in der Kompetenzregion Augsburg

The increasing proportion of carbon fibre reinforced plastics (CFRP) in different branches of industry will result in an increasingly larger quantity of CFRP wastes in future. With regard to improved management of natural resources, it is necessary to add these fibres that require energy-intensive production to effective recycling management. But high-quality material recycling is only ecoefficient if the recycled fibres can be used to produce new high-quality and marketable products. Tests carried out up to now indicate that very good results can be expected for large-scale recycling of carbon fibres by means of pyrolysis. The waste pyrolysis plant (WPP) operated in Burgau is the only large-scale pyrolysis plant for municipal wastes in Germany. Use of this plant to treat CFRP wastes represents a unique opportunity for the whole Southern German economy and in particular the Augsburg economic region. In a study funded by the Bavarian State Ministry of the Environment and Health ('Bayerisches Staatsministerium für Umwelt und Gesundheit'), the specific implementation options for the recovery of carbon fibres from composites by means of large-scale pyrolysis have been under investigation since November 2010. To this end, in the first step a development study was carried out, which in particular examined the options for modifying the Burgau WPP for the recycling of CFRP. The knowledge acquired from the pyrolysis tests, the fibre tests and the economic feasibility study confirmed the positive assessment of the overall concept of CFRP recycling in Burgau. As an overall result, unlimited profitability was found for all scenarios with regard to investments in CFRP recycling in Burgau WPP. The work on the development study was carried out by bifa Umweltinstitut GmbH together with the Augsburg-based 'function integrated lightweight construction project group ('Funktionsintegrierter Leichtbau' - FIL) of the Fraunhofer Institute for Chemical Technology (ICT). Methods: analysis and moderation of social processes, economy and management consulting, process engineering

Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?

Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.

Species discrimination of plant roots by Fourier transform infrared (FTIR) spectroscopy

Comprehension of belowground competition between plant species is a central part in understanding the complex interactions in intercropped agricultural systems, between crops and weeds as well as in natural ecosystems. So far, no simple and rapid method for species discrimination of roots in the soil exists. We will be developing a method for root discrimination of various species based on Fourier Transform Infrared (FTIR)-Attenuated Total Reflexion (ATR) Spectroscopy and expanding its application to the field. The absorbance patterns of FTIR-ATR spectra represent the chemical sample composition like an individual fingerprint. By means of multivariate methods, spectra will be grouped according to spectral and chemical similarity in order to achieve species discrimination. We will investigate pea and oat roots as well as maize and barnyard grass roots using various cultivars/proveniences grown in the greenhouse. Pea and oat are recommendable species for intercropping to achieve superior grain and protein yields in an environmentally sustainable manner. To evaluate the effects of intercropping on root distribution in the field, root segments will be measured directly at the soil profile wall using a mobile FTIR spectrometer. By extracting the main root compounds (lipids, proteins, carbohydrates) and recording their FTIR-ATR spectra as references, we will elucidate the chemical basis of species-specific differences.

Molecular determinants of host specificity of maize-, rice- and mango-pathogenic species of the genus Fusarium

Fusarium species of the Gibberella fujikuroi species complex cause serious diseases on different crops such as rice, wheat and maize. An important group of plant pathogens is the Gibberella fujikuroi species complex (GFC) of closely related Fusarium species which are associated with specific hosts; F. verticillioides and F. proliferatum are particularly associated with maize where they can cause serious ear-, root-, and stalk rot diseases. Two other closely related species of the GFC, F. mangiferae and F. fujikuroi, which share about 90Prozent sequence identity with F. verticillioides, are pathogens on mango and rice, respectively. All of these species produce a broad spectrum of secondary metabolites such as phytohormones (gibberellins, auxins, and cytokinins), and harmful mycotoxins, such as fumonisin, fusarin C, or fusaric acid in large quantities. However, the spectrum of those mycotoxins might differ between closely related species suggesting that secondary metabolites might be determinants for host specificity. In this project, we will study the potential impact of secondary metabolites (i.e. phytohormones and certain mycotoxins) and some other species-specific factors (e.g. species-specific transcription factors) on host specificity. The recently sequenced genomes of F. mangiferae and F. fujikuroi by our groups and the planned sequencing of F. proliferatum will help to identify such determinants by genetic manipulation of the appropriate metabolic pathway(s).

Quantification of small-scale physicochemical properties of intact macropore surfaces in structured soils

In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to the surfaces of preferential flow paths. Flow paths, i.e., macropores, are formed by worm burrows, decayed root channels, cracks, and inter-aggregate spaces. While biopores are covered by earthworm casts and mucilage or by root residues, aggregates and cracks are often coated by soil organic matter (SOM), oxides, and clay minerals especially in the clay illuviation horizons of Luvisols. The SOM as well as the clay mineral composition and concentration strongly determine the wettability and sorption capacity of the coatings and thus control water and solute movement as well as the mass exchange between the preferential flow paths and the soil matrix. The objective of this proposal is the quantitative description of the small-scale distribution of physicochemical properties of intact structural surfaces and flow path surfaces and of their distribution in the soil volume. Samples of Bt horizons of Luvisols from Loess will be compared with those from glacial till. At intact structural surfaces prepared from soil clods, the spatial distribution (mm-scale) of SOM and clay mineral composition will be characterized with DRIFT (Diffuse reflectance infrared Fourier transform) spectroscopy using a self-developed mapping technique. For samples manually separated from coated surfaces and biopore walls, the contents of organic carbon (Corg) and the cation exchange capacity (CEC) will be analyzed and related to the intensities of specific signals in DRIFT spectra using Partial Least Square Regression (PLSR) analysis. The signal intensities of the DRIFT mapping spectra will be used to quantify the spatial distribution of Corg and CEC at these structural surfaces. The DRIFT mapping data will also be used for qualitatively characterizing the small scale distribution of the recalcitrance, humification, and microbial activity of the SOM from structural surfaces. The clay mineral composition of defined surface regions will be characterized by combining DRIFT spectroscopic with X-ray diffractometric analysis of manually separated samples. Subsequently, the spatial distribution of the clay mineral composition at structural surfaces will be determined from the intensities of clay mineral-specific signals in the DRIFT mapping spectra and exemplarily compared to scanning electron microscopic and infrared microscopic analysis of thin sections and thin polished micro-sections. The three-dimensional spatial distribution of the total structural surfaces in the volume of the Bt horizons will be quantified using X-ray computed tomography (CT) analysis of soil cores. The active preferential flow paths will be visualized and quantified by field tracer experiments. These CT and tracer data will be used to transfer the properties of the structural surfaces characterized by DRIFT mapping onto the active preferential flow paths in the Bt horizons.

Pollen and environmental reconstruction, Holocene dynamics of tropical rainforest, climate, fire, human impact and land use in Sulawesi and Sumatra, Indonesia

The present-day configuration of Indonesia and SE Asia is the results of a long history of tectonic movements, volcanisms and global eustatic sea-level changes. Not indifferent to these dynamics, fauna and flora have been evolving and dispersing following a complicate pattern of continent-sea changes to form what are today defined as Sundaland and Wallacea biogeographical regions. The modern intraannual climate of Indonesia is generally described as tropical, seasonally wet with seasonal reversals of prevailing low-level winds (Asian-Australian monsoon). However at the interannual scale a range of influences operating over varying time scales affect the local climate in respect of temporal and spatial distribution of rainfall. Vegetation generally reflects climate and to simplify it is possible to distinguish three main ecological elements in the flora of Malaysia: everwet tropical, seasonally dry tropical (monsoon) and montane. Within those major ecological groups, a wide range of specific local conditions caused a complex biogeography which has and still attract the attention of botanists and biogeographers worldwide. Being one of the richest regions in the Worlds in terms of species endemism and biodiversity, Indonesia has recently gone through intensive transformation of previously rural/natural lands for intensive agriculture (oil palm, rubber, cocoa plantations and rice fields). Climate change represents an additional stress. Projected climate changes in the region include strengthening of monsoon circulation and increase in the frequency and magnitude of extreme rainfall and drought events. The ecological consequences of these scenarios are hard to predict. Within the context of sustainable management of conservation areas and agro-landscapes, Holocene palaeoecological and palynological studies provide a valuable contribution by showing how the natural vegetation present at the location has changed as a consequence of climate variability in the long-term (e.g. the Mid-Holocene moisture maximum, the modern ENSO onset, Little Ice Age etc.). The final aim of my PhD research is to compare the Holocene history of Jambi province and Central Sulawesi. In particular: - Reconstructing past vegetation, plant diversity and climate dynamics in the two study areas Jambi (Sumatra) and Lore Lindu National Park (Sulawesi) - Comparing the ecological responses of lowland monsoon swampy rainforest (Sumatra) and everwet montane rainforests (Sulawesi) to environmental variability (vulnerability/resilience) - Investigating the history of human impact on the landscape (shifting cultivation, slash and burn, crop cultivation, rubber and palm oil plantation) - Assessing the impact and role of droughts (El Niño) and fires - Adding a historical perspective to the evaluation of current and future changes.

Vertical partitioning and sources of CO2 production and effects of temperature, oxygen and root location within the soil profile on C turnover

For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.

Carbon and Chorine Isotope Effect Study to Investigate Chlorinated Ethylene Dehalogenation Mechanisms

Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.

Soil colour spectra of prehistoric pit fillings as a new analytical tool to measure changing soil characteristics over time on a regional scale

Prehistoric pits are filled with ancient topsoil material, which has been preserved there over millennia. A characteristic of these pit fillings is that their colour is different depending on the time the soil material was relocated. Soil colour is the result of soil forming processes and soil properties, and it could therefore indicate the soil characteristics present during that specific period. To the best of our knowledge, no investigation analysed and explained the reasons for these soil colour changes over time. The proposed project will investigate soil parameters from pit fillings of different archaeological periods in the loess area of the Lower Rhine Basin (NW-Germany). It aims to implement the measurement of colour spectra as a novel analytical tool for the rapid analyses of a high number of soil samples: the main goal is to relate highresolution colour data measured by a spectrophotometer to soil parameters that were analysed by conventional pedogenic methods and by mid infrared spectroscopy (MIRS), with a main focus on charred organic matter (BPCAs). This tool would enable us to quantify the variation of soil properties over a timescale of several millennia, during different prehistoric periods at regional scale and for loess soils in general. Detailed information concerning changing soil properties on a regional scale is necessary to determine past soil quality and it helps to increase our understanding of prehistoric soil cultivation practices. Furthermore, these information could also help to increase our understanding about agricultural systems in different archaeological periods.

Schwerpunktprogramm (SPP) 1315: Biogeochemische Grenzflächen in Böden; Biogeochemical Interfaces in Soil, Importance of soil organic carbon and mineral particle size fractions for the fate of soil supplied organic chemicals and their microbial transformations

The biogeochemical interface (BGI) in this project is defined as the organo-mineral surface of soil particles colonized by microorganisms. In the preceding project it was demonstrated that the different soil particle size fractions were associated with specifically structured microbial communities, a characteristic amount of soil organic carbon, and a specific capacity for adsorption of the organic chemicals phenol and 2,4-dichlorophenol, respectively. While the diversity of the microbial community was responsive to fertilization-determined additional organic soil carbon in the larger particle size fractions, it was unaffected in clay. Stable isotope probing with 13C-labelled phenol and 2,4-dichlorophenol revealed that the soil organic carbon in the BGIs also affected the diversity of microorganisms involved in the degradation of these chemicals. All these results are yet only based on studying one soil with three organic carbon variants (Bad Lauchstädt) and only two organic compounds. The objective of this 2nd phase project is to apply the innovative technology developed in the 1st phase for studying the BGI processes with soil organic carbon variants from another soil (Ultuna, SPP 1315 site) and with the chiralic anilide Fungicide metalaxyl as an additional compound. This 2nd phase SPP 1315 project will also, in a collaborative effort with two other SPP 1315 partners, investigate (1) the importance of BGIs for the entantio-selective degradation of metalaxyl and (2) the role of soil microorganisms in the formation of bound residues, respectively. Furthermore, the project will utilize stable isotope probing and next-generation DNA sequencing to link the structural and functional diversity of the microbial communities responsible for metabolism of organic chemicals in the different BGIs determined by particle size fractions and soil organic carbon variants.

1 2 3 4 534 35 36