s/statistische-methode/Statistische Methode/gi
Erneuerbare Energien, also vorrangig Solarenergie, Geothermie, Biomasse und Windkraft, sind als unerschöpfliche Quellen elementar wichtig für die heutige und zukünftige Energieversorgung Berlins. Der Ausbau der Solarenergienutzung wird dabei als besonders wichtiger Baustein in der Klimaschutzstrategie Berlins hervorgehoben. Der Senat von Berlin strebt eine klimaneutrale Energieversorgung der Stadt bis 2045 an. Daher wurde der Ausbau der erneuerbaren Energien, insbesondere die Nutzung der Solarpotenziale, im Berliner Energie- und Klimaschutzprogramm 2030 (BEK 2030) durch den Berliner Senat beschlossen. Eine wichtige Grundlage, die zum Abbau der bestehenden Hemmnisse der Solarenergie beitragen soll, ist der „Masterplan Solarcity“ . Am 06. Mai 2025 wurde der Masterplan in seiner zweiten Umsetzungsphase 2025-2030 durch die federführende Senatsverwaltung für Wirtschaft, Energie und Betriebe nach einem breiten Beteiligungsprozess veröffentlicht. Der Maßnahmenkatalog ist damit weiterhin die Basis für den weiteren Ausbau der Solarenergie in Berlin. Berlin nähert sich dem Ziel, bis 2035 einen Solarstromanteil von 25% an der Berliner Stromerzeugung zu erreichen ( Masterplan Solarcity ). Seit 2020 werden jährlich Monitoringberichte zum Masterplan Solarcity veröffentlicht (SenWEB 2025). Im Berliner Klimaschutz- und Energiewendegesetz vom 19. August 2021 (EWG Bln 2021) § 19 ist die vermehrte Erzeugung und Nutzung von erneuerbaren Energien auf öffentlichen Gebäuden als Ziel festgesetzt. Die Senatsverwaltung für Wirtschaft, Energie und Betriebe unterstützt insbesondere die Bezirke mit dem Förderprogramm SolarReadiness, unter anderem Statik und Anschlüsse an die Anforderungen von Solaranlagen anzupassen. Durch den so beschleunigten Ausbau von Solaranlagen erfüllt das Land Berlin die Vorbildrolle der öffentlichen Hand. Auf privaten Gebäuden greift außerdem seit dem 01. Januar 2023 bei wesentlichen Dachumbauten sowie bei Neubauten die Solarpflicht nach dem Solargesetz Berlin vom 05. Juli 2021. Bei einer Nutzungsfläche von mehr als 50 Quadratmetern sind Eigentümer:innen zur Installation und zum Betrieb einer Photovoltaikanlage verpflichtet. Weitere Informationen und einen Praxisleitfaden zum Solargesetz finden Sie hier . Zur Unterstützung bei der Erfüllung der Solarpflicht, sowie um die Wirtschaftlichkeit von Photovoltaikanlagen zu verbessern, fördert Berlin mit dem Förderprogramm SolarPLUS als Teil des Masterplan Solarcity den Photovoltaikausbau. So wurden seit Start des Programms im September 2022 bis Mai 2025 24.153 Zuwendungen aus SolarPLUS bewilligt. Im Mai 2019 wurde das Solarzentrum Berlin eröffnet, das als unabhängige Beratungsstelle rund um das Thema Solarenergie arbeitet ( Solarzentrum Berlin ). Das Zentrum wird von der Deutschen Gesellschaft für Sonnenenergie (DGS), Landesverband Berlin Brandenburg, betrieben und von der Senatsverwaltung für Wirtschaft, Energie und Betriebe als Maßnahme des Masterplans Solarcity finanziert. Auf Bundesebene wurden durch das Jahressteuergesetz 2022 die Umsatzsteuer für Lieferungen sowie die Installation von Solarmodulen, einschließlich der für den Betrieb notwendigen Komponenten und der Speicher, auf 0 Prozent gesenkt (JStG 2022, UStG § 12 Abs. 3). Diese Regelung betrifft Anlagen auf Wohngebäuden, öffentlichen Gebäuden und Gebäuden, die für dem Gemeinwohl dienende Tätigkeiten genutzt werden. Die Voraussetzungen für die Befreiung gelten als erfüllt, wenn die Anlagenleistung 30kWp nicht überschreitet. Der Nullsteuersatz gilt seit dem 1. Januar 2023. Am 15. Mai 2024 ist das Solarpaket I in Kraft getreten und hat Maßnahmen eingeführt, die den Ausbau der Photovoltaik (PV) in Deutschland erleichtern und beschleunigen soll. Ein Fokus liegt dabei auf sogenannten Balkonkraftwerken, also steckerfertigen Solaranlagen für den Eigengebrauch. Zusätzlich wurde ermöglicht, dass Solarstrom vom eigenen Dach vergünstigt an Mieterinnen und Mieter weitergegeben werden kann. Überschussstrom, der nicht selbst genutzt wird, kann kostenfrei und ohne Vergütung an Netzbetreiber abgegeben werden, wodurch Betreiber kleinerer Anlagen entlastet werden. Anlagenzertifikate sind bei größeren Leistungen (ab 270 kW Einspeisung oder 500 kW Erzeugung) erforderlich. Zum Stand Ende 2024 liegt der Solarstromanteil in Berlin bei 4,7 Prozent (SenWEB2025). Da die räumliche Darstellung und Nutzung von energierelevanten Daten, wie z. B. Solardaten, in Berlin zuvor uneinheitlich und durch verschiedene Angebote realisiert wurde, steht mit dem Energieatlas Berlin seit Juli 2018 ein Fachportal zur Unterstützung der Energiewende bereit, das die wichtigsten Daten benutzerfreundlich und anschaulich präsentiert sowie regelmäßig aktualisiert. Die im Umweltatlas an dieser Stelle dargestellten Inhalte für Photovoltaik (PV), d.h. der direkten Umwandlung von Sonnenenergie in elektrische Energie, und Solarthermie (ST), d.h. der Wärmegewinnung aus der solaren Einstrahlung, beziehen sich auf die im Energieatlas veröffentlichten Daten und deren Erfassungsstände: 07.10.2024 für die Standortdaten der Photovoltaik-Anlagen und 31.12.2015 bzw. 29.03.2023 (aggregierte BAFA-Daten) für diejenigen der Solarthermie. Im Rahmen der Fortführung des Energieatlas Berlin werden die Aktualität und Güte der Daten im Bereich der Solaranlagen, vor allem derjenigen mit Photovoltaik, kontinuierlich verbessert. Im Vergleich zur Solarthermie gibt es in Berlin deutlich mehr erfasste Photovoltaikanlagen. So wurden bis zum 31.12.2024 41.723 Anlagen installiert, die zusammen eine installierte Leistung von rund 380,6 MWp aufweisen. Der darüber jährlich zu produzierende Stromertrag kann nur geschätzt werden und wird bei ca. 343 GWh/a liegen (abzüglich 5 % bei der Generatorleistung und durchschnittlichem Stromertrag von 900 kWh/a pro kW). Theoretisch können mit dieser Leistung rund 131.000 Haushalte mit einem angenommenen mittleren Stromverbrauch von je 2.500 kWh/a versorgt werden. Seit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Auswertungen. Abbildung 1 verdeutlicht die unterschiedlichen Ausbauzahlen je nach Bezirk (Abb. 1a), vor allem Stadtgebiete mit großräumiger Einzel- und Zweifamilienhausbebauung zeigen die größten Anteile. Dazu passend überwiegt mit rund 37.438 von 38.798 Anlagen die geringste Leistungsklasse mit bis zu 30 kWp (Abb. 1b), die auf kleinen Dächern und Balkonkraftanlagen bevorzugt eingesetzt werden. Im Jahr 2019 stieg der jährliche Zuwachs für Anlagen nach dem EEG erstmals wieder auf über 100.000 neuen Anlagen. Zum 01. Juli 2022 wurde die EEG-Umlage auf Null gesetzt und mit der EEG-Novelle 2023 komplett abgeschafft. Im Jahr 2024 wurden nach Daten der Bundesnetzagentur mit 15.556 neuen Anlagen der bis dahin größte Anstieg verzeichnet. Die aktuellsten Informationen über Photovoltaikanlagen in Berlin, wie beispielsweise ihre Standorte oder statistische Auswertungen zum Ausbau in den Bezirken, sind im Energieatlas Berlin in Form von Karten und Diagrammen abrufbar: https://energieatlas.berlin.de/ . Abb. 1a: Entwicklung nach Bezirken (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Abb. 1b: Entwicklung nach Leistungsklassen (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Der öffentlichen Hand kommt beim PV-Ausbau eine besondere Vorbildfunktion zu. Mit der Novellierung des Berliner Klimaschutz- und Energiewendegesetzes (EWG Bln) im Jahr 2021 ist bei öffentlichen Neubauten die Errichtung von Solaranlagen auf der gesamten technisch nutzbaren Dachfläche Pflicht. Bei öffentlichen Bestandsgebäuden ist grundsätzlich bis zum 31.12.2024 eine Solaranlage nachzurüsten. Ausnahmen gelten u. a. für Dachflächen, die aufgrund ihrer Lage und Ausrichtung ungeeignet sind oder wenn öffentlich-rechtliche Vorschriften der Errichtung von Solar-Anlagen entgegenstehen. Laut Masterplanstudie zum Masterplan Solarcity Berlin ist das Land Berlin Eigentümerin von 5,4 % der Berliner Gebäude, auf deren Dachfläche 8,3 % des Solarpotenzials entfällt (SenWEB 2019). Eine Übersicht über den aktuellen Stand des Solaranlagenausbaus auf öffentlichen Gebäuden in Berlin ist über den folgenden Link im Energieatlas einsehbar: https://energieatlas.berlin.de/?permalink=PGieokF . Auf den öffentlichen Gebäuden Berlins befinden sich 1029 PV-Anlagen mit einer gesamten installierten Leistung von 64,6 MWp (Stand 31.12.2024, Solarcity Monitoringbericht). Es entfielen im Jahr 2024 ca. 17 % der installierten Leistung auf PV-Anlagen auf öffentlichen Gebäuden des Landes Berlin (Erfassungsstand 21.12.2024). Die meisten der 42.723 PV-Anlagen in Berlin befinden sich auf Gebäuden, die natürlichen Personen gehören (92 %). Dabei ist zu beachten, dass zwar die Gebäude Eigentum von natürlichen Personen sind, die PV-Anlagen jedoch nicht zwangsläufig ihnen gehören müssen, weil Gebäudeeigentümer ihre Dachfläche zur Nutzung an Dritte verpachten können. Auf den Gebäuden von Unternehmen und Genossenschaften sind 5 % der PV-Anlagen installiert. Die PV-Anlagen in Eigentum von natürlichen Personen machen einen Anteil von etwa 55 % der gesamten installierten Leistung aus, weitere 31,3 % entfallen auf PV-Anlagen auf Gebäuden von Unternehmen und Genossenschaften. Diese beiden Akteursgruppen zusammen sind demnach für den Großteil der installierten PV-Leistung verantwortlich. Abb. 2: Eigentümerstruktur als Anteil an der Anzahl der Anlagen sowie an der installierten Leistung (Datenstand 31.12.2024, Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Mit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Darstellungen. Im Land Berlin gab es zum Stand 31.12.2024 rd. 8.900 solarthermische Anlagen. Derzeit wird deren Zubau nicht für Berlin erfasst. Weitere Lücken ergaben sich durch die Übergabe der Förderung von Solarthermieanlagen von der BAFA an die KfW. Die Entwicklung in Abbildung 3 verdeutlicht, dass sich der Zuwachs an Neuinstallationen ab etwa 2013 im Vergleich zu den Vorjahren stark verringert hat. Insgesamt zeigt sich somit seitdem ein abnehmender Trend. Hauptsächlich werden solarthermische Anlagen in Berlin für die Warmwasserbereitung sowie zur Heizungsunterstützung genutzt. Darüber hinaus gibt es einige größere Solaranlagen für die Trinkwasser- und Schwimmbadwassererwärmung sowie für solare Luftsysteme und Klimatisierung. Vergleichbar der Verteilung bei den PV-Anlagen ist ein eindeutiger Schwerpunkt in den Außenbereichen der Stadt in den dort noch überwiegend vorhandenen landschaftlich geprägten Siedlungstypen sichtbar (vgl. Darstellung auf Postleitzahlebene im Geoportal Berlin , Karte Solaranlagen – Solarthermie, Ebene „Summe der solarthermischen Anlagen pro Postleitzahl“). Abb. 3: Entwicklung solarthermischer Anlagen im Land Berlin nach Anlagenanzahl pro Bezirk (Erfassungsstand 20.02.2024), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Aufgrund der lückenhaften Erfassung von Anlagen für Warmwasserbereitung kann von einer höheren Gesamtanzahl solarthermischer Anlagen in Berlin ausgegangen werden. Für die Mehrheit der Anlagen wurden Flachkollektoren gewählt. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Für die Jahre nach 2015 liegen für Berlin keine Einzelangaben, nur noch höher aggregierte Daten des Bundesamtes für Wirtschaft und Ausfuhrkontrolle (BAFA) vor, die keine Rückschlüsse nach Kollektorarten, Gebäudetypen oder Kollektorflächen mehr zulassen. Der Zubau neuer solarthermischer Anlagen ist in Berlin seit 2013 gegenüber den Vorjahren deutlich gesunken. Die Anzahl der Solarthermieanlagen im Jahr 2024 beläuft sich auf ca. 8.900 Anlagen mit einer Gesamtkollektorfläche von ca. 94.300 m² (SenWEB/Monitoringbericht 2024 zum Masterplan Solarcity). Dieser Wert bildet jedoch nicht vollständig die tatsächliche Anzahl der in den vergangenen Jahren neu errichteten Solarthermieanlagen in Berlin ab, sodass von einem höheren Anlagenbestand auszugehen ist. Deutschlandweit hat sich der Zubau der Thermie-Kollektorfläche seit 2015 verlangsamt und bis zum Jahresende 2024 auf einen Zuwachs von Rd. 0,22 Mio. qm reduziert. Insgesamt flacht die Kurve an Zuwachsfläche und Anlagen seit einigen Jahren deutlich ab (Bundesverband Solarwirtschaft 2024). Die flächendeckende Analyse der solaren Einstrahlung liefert die Grundlage zur Berechnung der nutzbaren Strahlung und wird als Jahressumme dargestellt. (IP SYSCON 2022). Für den Berliner Raum wird vom Deutschen Wetterdienst (DWD) für den aktuellen langjährigen Betrachtungszeitraum 1991-2020 eine mittlere Jahressumme der Globalstrahlung, also der Summe wechselnder Anteile aus direkter und diffuser Sonneneinstrahlung, auf eine horizontale Fläche in Höhe von 1081-1100 kWh/m² angegeben. Der Berliner Raum liegt damit ziemlich exakt im Mittel der in Deutschland vorkommenden Bandbreite an Einstrahlungswerten (vgl. Abb. 4). Im Vergleich der beiden letzten Referenzzeiträume 1981-2010 zu 1991-2020 nahm die solare Einstrahlung im Zuge des Klimawandels in Berlin und Brandenburg um 40 bis 50 kWh/m² pro Jahr, also rund 5 %, zu. Die Einstrahlung auf eine horizontale Fläche wird je nach örtlicher Lage von verschiedenen Faktoren beeinflusst (vgl. Methode). Abb. 4: Mittlere Jahressummen der Globalstrahlung in Deutschland für den langjährigen Zeitraum 1991-2020 (unveränderte Wiedergabe; Quelle: Deutscher Wetterdienst (DWD) 2022)
Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Die Untersuchung von 153 Friedhöfen in der Metropole Ruhr zeigt mit 964 Arten der Gefäßpflanzen eine hohe Biodiversität auf. 102 der Arten werden auf der Roten Liste Nordrhein-Westfalens (NRW) und/oder mindestens einer der regionalen Roten Listen des Landes mit Bezug zum Untersuchungsgebiet (im Text als "Rote-Liste-Arten" bezeichnet und für die statistischen Auswertungen verwendet) in einer der Kategorien 0 = ausgestorben oder verschollen, 1 = vom Aussterben bedroht, 2 = stark gefährdet, 3 = gefährdet, G = Gefährdung unbekannten Ausmaßes, R = extrem selten oder V = Vorwarnliste geführt. Für 30 der Arten gilt dies in Hinblick auf die bundesweite Rote Liste. Der Einfluss der Parameter Friedhofstyp, Alter, Flächengröße, Grabanteil und Gehölzanteil auf die Artenvielfalt und den Anteil von Rote-Liste-Arten wurde analysiert. Friedhöfe, die vor 1800 erbaut wurden, zeigen signifikant erhöhte Anteile an Rote-Liste-Arten in ihrem Artenspektrum, während diese bei Friedhöfen mit weniger als 20 % mit Gräbern belegten Parzellen signifikant niedriger sind. Eine Auswertung der Standortbindung der Rote-Liste-Arten auf den untersuchten Friedhöfen zeigt anhand der Angaben in der bundesweiten Roten Liste eine deutliche Präferenz von Offenlandstandorten. Somit stellen sich die Nutzung von Friedhofsflächen für Grabfelder und ein erheblicher Offenlandanteil als entscheidende Faktoren für die Pflanzenartenvielfalt und das Vorkommen von Rote-Liste-Arten heraus. Beide Faktoren können durch gezieltes Management beeinflusst werden. Selbst die negativen Auswirkungen des Wandels der Bestattungskultur können durch planerische Maßnahmen gemildert werden. Von primärer Bedeutung ist jedoch v.a. im urbanen Kontext grundsätzlich die Erhaltung der Friedhöfe.
<p>Rund 50 Millionen Autos rollen über deutsche Straßen. Im Jahr 2021 wurden davon rund 2,5 Millionen Fahrzeuge als Gebrauchtwagen exportiert. Es fielen rund 397.000 Altfahrzeuge an, der niedrigste Wert seit 2004. Die Altfahrzeuge werden demontiert und anschließend geschreddert. Im Jahr 2021 wurden 97,5 % der Altfahrzeugmasse verwertet, davon 90,0 % stofflich.</p><p>Altfahrzeuge 2021: Niedrigste Anzahl seit Beginn der Aufzeichnungen in 2004</p><p>Zu den Altfahrzeugen laut Altfahrzeugverordnung zählen Pkw und leichte Nutzfahrzeuge (Fahrzeuge der Klassen M1 und N1). Nachdem die Covid-19-Pandemie den Fahrzeugmarkt und den Altfahrzeugmarkt im Jahr 2020 beeinflusst hatte, sank die Anzahl der Neuzulassungen von M1- und N1-Kraftfahrzeugen im Jahr 2021 im Vergleich zu 2020 weiter, um rund 9 %. Der Kraftfahrzeugbestand stieg trotzdem weiter an und erreichte am 1.1.2021 51,1 Millionen und am 1.1.2022 51,6 Millionen M1- und N1-Kraftfahrzeuge (<a href="https://www.umweltbundesamt.de/daten/verkehr/verkehrsinfrastruktur-fahrzeugbestand#pkw-bestande-und-neuzulassungen-nach-kraftstoffart">siehe Abbildungen</a>im Abschnitt „Pkw-Bestände und Neuzulassungen nach Kraftstoffart“ auf der DzU-Seite „Verkehrsinfrastruktur und Fahrzeugbestand“). Die Anzahl der Altfahrzeuge setzte ihren Rückgang seit 2018 weiter fort und erreichte 2021 mit 400.277 Altfahrzeugen (davon 396.773 im Inland angefallen) abermals einen historischen Tiefstand seit Beginn der statistischen Erfassung 2004, entsprechend einem Rückgang gegenüber 2018 um rund 29 % (siehe Abb. „Anzahl der Altfahrzeuge zur Verwertung in Deutschland“). Datenbasis sind die Abfallstatistiken aller gut 1.000 Altfahrzeugverwerter, die über die statistischen Landesämter und das Statistische Bundesamt erfasst werden.</p><p>Das durchschnittliche Gewicht der Altfahrzeuge betrug 2021 gemäß<a href="https://www-genesis.destatis.de/genesis//online?operation=table&code=32111-0004&bypass=true&levelindex=1&levelid=1706538265826#abreadcrumb%20">Destatis-Abfallstatistik</a>1.121 kg und damit rund 200 kg mehr als zu Beginn der Erhebungen im Jahr 2004. Mit 1.121 kg kommen die Altfahrzeuge jedoch bei weitem noch nicht an das Durchschnittsgewicht der Pkw-Neuzulassungen des Jahres 2000 heran und das, obwohl dies bei einem durchschnittlichen Altfahrzeugalter von ca. 17 Jahren zu erwarten gewesen wäre (siehe Abb. „Durchschnittsgewicht Neufahrzeuge und Altfahrzeuge“). Als Begründung ist sehr wahrscheinlich, dass die Gebrauchtfahrzeugexporte durchschnittlich eher die schwereren Fahrzeugsegmente betreffen und somit eher die leichteren Fahrzeuge in Deutschland als Altfahrzeuge in die Entsorgung kommen. Das Durchschnittsgewicht der Pkw-Neuzulassungen stieg zwischen dem Jahr 2000 (1.312 kg) und 2021 (1.653 kg) um 26 % an, was unter anderem mit dem Erstarken größerer und schwererer Segmente, wie z.B. SUV, zusammenhängt (<a href="https://www.umweltbundesamt.de/daten/verkehr/verkehrsinfrastruktur-fahrzeugbestand#stark-steigende-tendenz-bei-suvs-und-gelandewagen">siehe Abb</a>. „Pkw-Bestand nach Segmenten“ auf der DzU-Seite „Verkehrsinfrastruktur und Fahrzeugbestand“).</p><p>Nach Angaben der GESA, der Gemeinsamen Stelle Altfahrzeuge, gab es Mitte 2021 1.140 Altfahrzeug-Demontagebetriebe, 49 Schredderanlagen und 33 sonstige Anlagen zur weiteren Behandlung mit einer Anerkennung nach der<a href="http://www.gesetze-im-internet.de/altautov/">Altfahrzeugverordnung</a>. Von allen anerkannten Betrieben nahmen nach Angaben des<a href="https://www-genesis.destatis.de/genesis//online?operation=table&code=32111-0004&bypass=true&levelindex=1&levelid=1706538265826#abreadcrumb">Statistischen Bundesamts</a>im Jahr 2021 1.030 Demontagebetriebe Altfahrzeuge sowie 45 Schredder- und sonstige Anlagen Restkarossen zur Behandlung an (siehe Abb. „Anzahl der anerkannten Altfahrzeugverwertungsbetriebe 2006 bis 2021“).</p><p>In einer Sonderauswertung ermittelte das Statistische Bundesamt die Größenverteilung der Altfahrzeug-Demontagebetriebe in Deutschland im Jahr 2021. Die Branche der Demontagebetriebe besteht überwiegend aus sehr kleinen Betrieben. Mehr als die Hälfte der Demontagebetriebe behandelte 2021 250 oder weniger Altfahrzeuge pro Jahr, während die größten 2 % der Betriebe 29 % der Altfahrzeuge durchsetzten (siehe Abb. „Größenklassen der Altfahrzeugverwerter in Deutschland, 2021“).</p><p>Nur ein Teil der 2021 mindestens rund 2,9 Mio. endgültig außer Betrieb gesetzten Fahrzeuge (Pkw und leichte Nutzfahrzeuge) fällt als Altfahrzeuge an. Rund 2,5 Mio. Fahrzeuge wurden 2021 als Gebrauchtfahrzeuge exportiert, siehe Abschnitt „Verbleib von endgültig außer Betrieb gesetzten Fahrzeugen“. Die anfallenden Altfahrzeuge werden in Demontagebetrieben und Schredderanlagen verwertet. Dabei wurden in Deutschland die EU-weit vorgegebenen Recycling- und Verwertungsquoten von 85 % beziehungsweise 95 % im Jahr 2021 wieder eingehalten (90,0 % bzw. 97,5 %); siehe Abschnitt „Altfahrzeugverwertungsquoten“ und die ausführlichen Altfahrzeug-Jahresberichte auf der<a href="https://www.bmuv.de/DL1997">Seite des BMUV</a>.</p><p>Verbleib von endgültig außer Betrieb gesetzten Fahrzeugen</p><p>Nach Zählungen des Kraftfahrt-Bundesamtes (KBA) betrug der<a href="https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/FahrzeugklassenAufbauarten/2022/b_fzkl_zeitreihen.html?nn=3524712&fromStatistic=3524712&yearFilter=2022&fromStatistic=3524712&yearFilter=2022">Bestand</a>der Kraftfahrzeuge (Kfz) mit amtlichen Kennzeichen am 1. Januar 2023 in Deutschland 60,1 Mio., davon 48,8 Mio. Personenkraftwagen (Pkw). Jährlich werden rund 8 bis 10 Mio. Kfz vorübergehend oder endgültig außer Betrieb gesetzt, im Jahr 2021 waren es 8,7 Mio. Kfz (2022 nochmals weniger: 7,8 Mio. Kfz), davon 7,6 Mio. Pkw (2022: 6,7 Mio. Pkw) und 0,4 Mio. leichte Nutzfahrzeuge bis 3,5 Tonnen (<a href="https://www.kba.de/DE/Statistik/Fahrzeuge/Ausserbetriebsetzungen/FahrzeugklassenAufbauarten/2022/2022_a_fzkl_zeitreihen.html?nn=3529148&fromStatistic=3529148&yearFilter=2022&fromStatistic=3529148&yearFilter=2022">KBA 2022</a>und<a href="https://www.kba.de/DE/Statistik/Fahrzeuge/Ausserbetriebsetzungen/Groessenklassen/2021/2021_a_groessenklassen_zeitreihen.html?nn=3528410&fromStatistic=3528410&yearFilter=2021&fromStatistic=3528410&yearFilter=2021">KBA 2021</a>). Dass die Covid-19-Pandemie einen Einfluss auf den Rückgang der Stilllegungen gegenüber 2019 (10,1 Mio. Kfz) hatte, ist wahrscheinlich, konnte jedoch nicht quantifiziert werden.</p><p>Die Anzahl der endgültig außer Betrieb gesetzten Fahrzeuge ist relevant für die Bestimmung des Umfangs der statistischen Lücke des unbekannten Fahrzeugverbleibs. Statistische Angaben zur Anzahl der endgültigen Außerbetriebsetzungen existieren nicht. Als Mindestanzahl für das endgültige Ausscheiden aus dem deutschen Fahrzeugmarkt im Jahr 2021 ergeben sich 2,92 Mio. Fahrzeuge als Summe aus statistisch belegten Gebrauchtfahrzeugexporten (2,52 Mio. Fahrzeuge) und Verschrottung (0,40 Mio. Altfahrzeuge). Dies bedeutet, dass die Stilllegungsquoten, also der Anteil der endgültigen Stilllegungen an allen Außerbetriebsetzungen, im Jahr 2021 noch höher gewesen sein müssen als im Jahr 2018. Für das Jahr 2018 hatte das Kraftfahrt-Bundesamt durch eine umfassende statistische Auswertung Stilllegungsquoten von 35,1 % (M1-Kfz) bzw. 38,4 % (N1-Kfz) ermittelt. Das Jahr 2018 war charakterisiert durch einen Sondereffekt der verstärkten Dieselfahrzeug-Stilllegungen.</p><p>Aus den Statistiken des Statistischen Bundesamtes und des Kraftfahrt-Bundesamtes lässt sich der Verbleib der endgültig stillgelegten Kraftfahrzeuge zum großen Teil verfolgen (siehe Abb. „Verbleib der endgültig stillgelegten Fahrzeuge in Deutschland 2021“ und Abb. „Verbleib der endgültig stillgelegten Fahrzeuge in Deutschland 2020“).</p><p>Der weitaus größte Teil der in Deutschland endgültig außer Betrieb gesetzten Fahrzeuge wird als Gebrauchtfahrzeuge aus Deutschland exportiert. Während im Jahr 2020 2,2 Mio. Fahrzeuge exportiert wurden (inkl. Zuschätzungen für statistisch nicht erfasste Exporte), waren es im Jahr 2021 erheblich mehr, nämlich 2,5 Mio. Fahrzeuge (bereits ohne Zuschätzung). Der Großteil davon wurde in anderen EU-Staaten wieder in Betrieb gesetzt. Nach den Bewirtschaftungszahlen des Kraftfahrt-Bundesamtes sowie einigen ergänzenden Daten der Außenhandelsstatistik des Statistischen Bundesamtes wurden im Jahr 2020 etwa 1,75 Mio. und 2021 etwa 2,30 Mio. Fahrzeuge in anderen EU-Staaten wieder zugelassen. Da die vorliegenden statistischen Daten als nicht vollständig zur Abbildung der tatsächlichen Gebrauchtfahrzeugexporte eingeschätzt werden, wurde für 2020 eine qualifizierte Zuschätzung von weiteren 210.000 Gebrauchtfahrzeugen vorgenommen. Für 2021 wurden keine weiteren Zuschätzungen vorgenommen, da sich bereits ohne Zuschätzungen so hohe Stilllegungsquoten errechneten (siehe oben), welche die statistisch durch das KBA ermittelten Stilllegungsquoten für 2018 merklich übertrafen. Rund 260.000 (für 2020, inkl. Zuschätzung) bzw. 220.000 Fahrzeuge (für 2021, ohne Zuschätzung), also lediglich rund 9 bzw. 7 % der endgültig außer Betrieb gesetzten Fahrzeuge, wurden als Gebrauchtfahrzeuge ins Nicht-EU-Ausland exportiert (Quelle: Außenhandelsstatistik, vergleiche die deutschen<a href="https://www.bmuv.de/DL1997">Altfahrzeug-Jahresberichte</a>für 2020, Abbildung 4, und 2021, Abbildung 3). Nach Westafrika wurden 2021 gemäß Außenhandelsstatistik rund 74.000 Gebrauchtfahrzeuge exportiert.</p><p>0,41 Mio. (2020) bzw. 0,40 Mio. (2019) oder rund 15 % der endgültig außer Betrieb gesetzten Kraftfahrzeuge wurden als Altfahrzeuge verwertet; siehe Abschnitt „Altfahrzeuge 2021: Niedrigste Anzahl seit Beginn der Aufzeichnungen in 2004“. Ein Export von Altfahrzeugen, die der Altfahrzeugverordnung unterfallen, fand entsprechend der<a href="https://www.umweltbundesamt.de/sites/default/files/medien/10592/dokumente/grenzueberschreitende_verbringung_von_zustimmungspflichtigen_abfaellen_export_2021.pdf">Abfallexportstatistik</a>im Jahr 2021 nicht statt. Bei den in der Statistik erfassten, exportierten „Altfahrzeugen“ (Abfallschlüssel 160104*) handelte es sich nicht um Straßenfahrzeuge.</p><p>Seit Jahren ist nach Auswertung der verfügbaren Daten das Problem zu beobachten, dass der Verbleib einer sechsstelligen Anzahl an Fahrzeugen (z.B. 2016: 430.000, 2020: rund 150.000 Fahrzeuge (Spannweite 30.000 bis 270.000 Fahrzeuge) statistisch nicht erklärbar ist. Die statistische Lücke des unbekannten Fahrzeugverbleibs kann zumindest zum Teil in Verbindung gebracht werden mit der Gefahr der nicht anerkannten Demontage von Altfahrzeugen. Die Studie im Auftrag des Umweltbundesamts „<a href="https://www.umweltbundesamt.de/publikationen/auswirkungen-illegaler-altfahrzeugverwertung">Auswirkungen illegaler Altfahrzeugverwertung</a>“ schätzt den ökonomischen Vorteil der nicht anerkannten Demontage-Akteure gegenüber den anerkannten Demontagebetrieben auf rund 250 bis 300 Euro pro Altfahrzeug ein, begründet durch geringere Behandlungs-, Verwaltungs- und weitere Kosten [Sander et al. 2022, Abbildung 62].</p><p>Für 2021 ergab sich rechnerisch erstmals keine statistische Lücke. Dies lässt jedoch nicht den Schluss zu, dass es in der Praxis keinen unbekannten Verbleib gab, sondern begründet sich in fehlenden belastbaren Werten für die (offenbar ungewöhnlich hohen) Stilllegungsquoten im Jahr 2021, welche man der Berechnung der statistischen Lücke hätte zugrunde legen können. Die Methode, die endgültigen Stilllegungen im Nachgang zu bestimmen und die so ermittelte Quoten dann auf die folgenden Jahre anzuwenden, ist somit an ihre Grenze gestoßen. Die Einmal- und Sondereffekte auf den Fahrzeugmarkt der letzten Jahre und folglich schwankenden Stilllegungsquoten können mit dieser Methode nicht abgebildet werden. Dass die Anzahl der endgültigen Außerbetriebsetzungen nicht direkt erfasst werden kann, liegt daran, dass bei der Fahrzeugabmeldung rechtlich nicht zwischen endgültiger oder vorübergehender Außerbetriebsetzung unterschieden wird.</p><p>Daher wurde der unbekannte Verbleib vereinfacht nochmals anhand einer anderen Rechnung bestimmt. Dazu wurde der Bestandszuwachs der Fahrzeuge im Laufe der Jahre 2019, 2020 und 2021 erklärt durch die neu in den Bestand hinzukommenden Fahrzeuge (Neuzulassungen + Gebrauchtfahrzeugimporte) abzüglich der aus dem Bestand endgültig ausscheidenden Fahrzeuge (Gebrauchtfahrzeugexporte + Altfahrzeuge), (siehe Abb. „Bilanzierung des Verbleibs über die Bestandsänderung von M1- und N1-Kfz in den Jahren 2019 bis 2021“). Diese Bilanzierung ging, wie erwartet, nicht vollständig auf, sondern es blieben hier ebenfalls nicht erklärte Lücken von rechnerisch rund 450.000 (2019) sowie 320.000 (2020) Fahrzeugen, als ein in Relation zum Altfahrzeuganfall (rund 400.000 Altfahrzeuge) ein sehr hohes Ausmaß des unbekannten Fahrzeugverbleibs.</p><p>Für 2021 ergibt sich auf Basis der verfügbaren Daten ein umgekehrtes Bild, und zwar ein Verbleibs-Überschuss von rund 80.000 Fahrzeugen. Neben Datenuntersicherheiten bei den Gebrauchtfahrzeug-Exporten und -Importen kann ein weiterer Sachverhalt in die Erklärung mit hineinspielen: die Umschreibungen nach Außerbetriebsetzung und die Wiederzulassungen nach Außerbetriebsetzung von Fahrzeugen im Jahr 2021, die jedoch vor dem Jahr 2021 außer Betrieb gesetzt worden waren. Diese Fahrzeuge könnten den Fahrzeugbestand während des Jahres 2021 erhöht haben, allerdings gibt es umgekehrt auch Fahrzeuge, die im Jahr 2021 außer Betrieb gesetzt wurden, um sie erst im Folgejahr 2022 oder später wieder zuzulassen oder umzuschreiben, die also den Fahrzeugbestand während des Jahres 2021 verringerten. Statistische Angaben, welcher der beiden Werte größer war, sind nicht verfügbar.</p><p>Altfahrzeug-Verwertungsquoten</p><p>Die ausführlichen deutschen Jahresberichte über die Altfahrzeug-Verwertungsquoten seit 2008, die das Umweltbundesamt jährlich auf Basis der Daten des Statistischen Bundesamtes und eigener Berechnungen ermittelt, sind auf der<a href="http://www.bmuv.de/DL1997">Altfahrzeug-Seite des BMUV</a>auf Deutsch und (bis 2017) Englisch veröffentlicht.</p><p>Seit 2006 wurden die gesetzlich von der EU geforderten Verwertungsziele für Altfahrzeuge in Deutschland übertroffen. Erstmals wurde die Altfahrzeug-Verwertungsquote von 95 Gewichtsprozent (Gew.-%) 2019 mit 93,6 % leicht verfehlt. Gleiches ereignete sich 2020 mit 94,0 %. Dies war begründet im sehr geringen Restkarossen-Eingang der Schredderanlagen im Vergleich zu den angefallenen Altfahrzeugen und infolge entsprechend geringeren Mengen an verwerteten nichtmetallischen Schredderrückständen. Im Jahr 2021 konnten beide EU-Ziele – die Recyclingquote mit 90,0 % und die Verwertungsquote mit 97,5 % – wieder erreicht werden. Die Verwertungsquote beinhaltet neben der stofflichen Verwertung der Materialien der Altfahrzeuge auch die energetische Verwertung, zum Beispiel die Abfallverbrennung zur Energieerzeugung (siehe Abb. „Altfahrzeug-Verwertungsquoten Deutschland 2015 bis 2021“).</p><p>Die<a href="https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02000L0053-20230330">EG-Altfahrzeug-Richtlinie</a>und die deutsche<a href="https://ec.europa.eu/eurostat/statistics-explained/index.php?title=End-of-life_vehicle_statistics">Altfahrzeug-Verordnung</a>fordern seit 2015, dass mindestens 95 Gewichtsprozent (Gew.-%), bezogen auf das Leergewicht aller Altfahrzeuge, wieder verwendet oder verwertet werden. Davon sind mindestens 85 Gew.-% wieder zu verwenden oder stofflich zu verwerten, also zu recyceln. In den Jahren 2006 bis 2014 lagen die geforderten Quoten bei 85 Gew.-%für Wiederverwendung und Verwertung und bei 80 Gew.-% für die Wiederverwendung und stoffliche Verwertung.</p><p>Auf der Seite von Eurostat veröffentlicht die EU-Kommission die<a href="https://ec.europa.eu/eurostat/statistics-explained/index.php?title=End-of-life_vehicle_statistics">Altfahrzeugmengen und -verwertungsquoten</a>aller EU-Staaten. Im Jahr 2021 fielen insgesamt rund 5,7 Millionen Altfahrzeuge in der EU (ohne Großbritannien) an, die meisten davon in Frankreich (1,3 Mio.), gefolgt von Italien (1,2 Mio.) und Spanien (730.000). Auch in Polen (450.000) fielen mehr Altfahrzeuge an als in Deutschland, das mit rund 400.000 Altfahrzeugen auf Platz 5 lag. 20 der 27 EU-Mitgliedstaaten hielten im Jahr 2021 die Mindest-Recyclingquote von 85 % ein, 18 die Mindest-Verwertungsquote von 95 %.</p><p>Beitrag der Demontagebetriebe für Altfahrzeuge zu den Verwertungsquoten</p><p>Nach Angaben des Statistischen Bundesamtes nahmen im Jahr 2021 1.030 Altfahrzeug-Demontagebetriebe Altfahrzeuge an. Diese demontierten 2021 gemäß der Abfallstatistik des Statistischen Bundesamtes 19,3 % des Leergewichts der behandelten Altfahrzeuge zur Gewinnung von Ersatzteilen oder verwertbaren Materialien. 13,4 % waren metallische Komponenten wie Katalysatoren, Motoren, Getriebe, 5,9 % nichtmetallische Bauteile und Werkstoffe wie Reifen, Ersatzteile und Betriebsflüssigkeiten. Diese Teile wurden erneut verwendet oder verwertet, meist stofflich. Bezogen auf die angefallenen 396.773 Altfahrzeuge trugen die demontierten nichtmetallischen Bauteile im Jahr 2021 lediglich 5,9 % zur Verwertungs- und 5,4 % zur Recyclingquote bei.</p><p><strong>Glas und Kunststoff:</strong>Pro Altfahrzeug wurden gemäß Abfallstatistik lediglich 3,4 kg Glas und 4,0 kg Kunststoffteile (ohne Batteriegehäuse) demontiert und einer Verwertung zugeführt (siehe Abb. „Verwertung demontierter Werkstoffe aus Altfahrzeugen in Deutschland 2021“). Dies entspricht nur einem Bruchteil des pro Altfahrzeug enthaltenen Glases von rund 30 kg sowie des<a href="https://www.umweltbundesamt.de/publikationen/uba-kernelemente-zur-steigerung-des">vom Umweltbundesamt formulierten Ziels</a>für die werkstoffliche Verwertung von Kunststoffteilen von 20 kg pro Altfahrzeug. Oder anders ausgedrückt: Geht man von einem durchschnittlichen Kunststoffgehalt der Altfahrzeuge von 12 % aus, enthielt ein durchschnittliches Altfahrzeug in etwa 135 kg im Jahr 2021. Davon wurden 4,0 kg (entspricht 3 %) demontiert und einer Verwertung zugeführt. Hier bleibt die deutsche Demontagepraxis noch weit hinter dem perspektivischen Recycling-Zielwert von 30 % zurück, den der<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=COM:2023:451:FIN">Entwurf der EU-Kommission für eine Circular Economy- und Altfahrzeug-Verordnung</a>(Juli 2023) in Artikel 34 formuliert.</p><p><strong>Fahrzeugelektronik:</strong>Von Interesse ist auch der Fortschritt in Richtung des im Jahr 2016 formulierten ProgRess II-Ziels der Bundesregierung einer „möglichst weitgehenden Demontage der Fahrzeugelektronik pro Altfahrzeug bis 2020“. Nachdem die demontierte Menge an Bauteilen der Fahrzeugelektronik gemäß den Daten der Abfallstatistik bis zum Jahr 2019 auf durchschnittlich 2,1 kg Fahrzeugelektronik pro Altfahrzeug angestiegen war, konnten 2021 lediglich 0,9 kg pro Altfahrzeug beobachtet werden. Die Ergebnisse liegen damit weit entfernt von der UBA-Empfehlung von 15 kg Fahrzeugelektronik.</p><p>Beitrag der Schredderanlagen und Postschreddertechniken</p><p>Nach der Demontage werden die entfrachteten Restkarossen in anerkannten Schredderanlagen und sonstigen Anlagen zur weiteren Behandlung behandelt. Im Jahr 2021 wurden nach Angaben des Statistischen Bundesamtes von 45 Anlagen 404.158 Restkarossen (336.630 t) (davon 385.375 Stück aus dem Inland) mit einem Durchschnittsgewicht von 833 kg zur Behandlung angenommen. Die Restkarossen machten lediglich rund 10,9 % des Metallschrottinputs der 45 Anlagen aus (siehe Abb. „Input in Schredderanlagen in Deutschland 2021“).</p><p>Beim Zerkleinern der Restkarossen und weiterer Schrotte entstehen drei Fraktionen:</p><p>Metallverwertung</p><p>Die Metallfraktionen aus der Demontage und dem Zerkleinern im Schredder trugen mit 74,2 % den größten Anteil zu den Recycling- und Verwertungsquoten bei. Der verwertete Metallgehalt wird ermittelt auf Grundlage von Informationen der Fahrzeughersteller und eines Schredderversuchs:</p><p>Verwertung der Schredderleichtfraktion</p><p>Im Jahr 2021 fielen in den 45 Schredder- und sonstigen Anlagen insgesamt rund 466.000 t Schredderleichtfraktion an. Unter diesem Begriff zusammengefasst wurden hierfür neben den Abfallschlüsseln der Schredderleichtfraktion (19 10 03 und 19 10 04) auch weitere Abfallschlüssel, die für Schredderrückstände aus Altfahrzeugen verwendet werden: Mineralien (Abfallschlüssel 19 12 09) und brennbare Abfälle (Abfallschlüssel 19 12 10) sowie die mengenrelevanten sonstigen Abfälle (19 12 12), die 2020 erstmals mitgerechnet werden konnten, was den sprunghaften Mengenanstieg von 345.000 auf 510.000 t Schredderleichtfraktion zwischen 2019 und 2020 erklärt. Zusammen mit den im Schredder gewonnenen Kunststofffraktionen fielen 2021 rund 470.000 t nichtmetallische Schredderrückstände an, von denen nur rund 15 % bzw. 72.085 t im Jahr 2021 aus Restkarossen stammten.</p><p>Im Jahr 2021 wurden von der Schredderleichtfraktion (19 10 03, 19 10 04, 19 12 09, 19 12 10, 19 12 12) der 45 Schredder- und sonstigen Anlagen zur Restkarossenbehandlung 10 % beseitigt, 55 % stofflich verwertet, meist als mineralreiche Fraktion im Bergversatz und Deponiebau. 35 % wurden 2021 energetisch in Müllverbrennungsanlagen oder als Ersatzbrennstoff verwertet (siehe Abb. „Entsorgung der Schredderleichtfraktion aus den Schredderanlagen mit Restkarosserieverwertung“). Die Verwertung der nichtmetallischen Schredderrückstände (Schredderleichtfraktion und separierte Kunststofffraktionen) trug im Jahr 2021 14,6 % zur Verwertungsquote bzw. 8,9 % zur Recyclingquote bei.</p>
Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) sowie der Grundwasserverordnung (GrwV) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte für gelöstes Ammonium im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Ammonium umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters einstellen. Die Karte zeigt farblich differenziert die Ammonium-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Die Klassifizierung orientiert sich an den gültigen Geringfügigkeitsschwellenwerten (GFS) der Länderarbeitsgemeinschaft Wasser (LAWA), den Grenzwerten der Trinkwasserverordnung (TrinkwV) und den Richtwerten der Weltgesundheitsorganisation (WHO). Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Hintergrundwerte sind keine aktuellen Messwerte zur Grundwassergüte und können nicht als solche genutzt werden! Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet, jedoch keine Messungen, die vor dem Jahr 2000 datieren. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016 WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg. Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Ammonium im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Ammonium umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Ammonium-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Phosphat im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Phosphat umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Phosphat-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Phosphat im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Phosphat umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Phosphat-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Chrom im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Chrom umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Chrom-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Vortrag auf dem Workshop in Wismar daraus entstanden
Untersuchung des Einflusses beruflicher Faktoren und des Passivrauchens auf das Lungenkrebsrisko in einer Fall-Kontroll-Studie mit 1004 Faellen und 1004 Kontrollen. Fortfuehrung der statistischen Auswertungen zu dieser 1987-1995 in Bremen durchgefuehrten Studie. Ergebnisse: vielfaeltig, siehe Bericht.
Origin | Count |
---|---|
Bund | 3303 |
Kommune | 4 |
Land | 174 |
Wissenschaft | 4 |
Type | Count |
---|---|
Daten und Messstellen | 45 |
Förderprogramm | 3175 |
Software | 1 |
Text | 92 |
Umweltprüfung | 1 |
unbekannt | 147 |
License | Count |
---|---|
geschlossen | 117 |
offen | 3321 |
unbekannt | 22 |
Language | Count |
---|---|
Deutsch | 3219 |
Englisch | 653 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 4 |
Datei | 54 |
Dokument | 87 |
Keine | 2182 |
Unbekannt | 6 |
Webdienst | 54 |
Webseite | 1214 |
Topic | Count |
---|---|
Boden | 2327 |
Lebewesen und Lebensräume | 2527 |
Luft | 2000 |
Mensch und Umwelt | 3460 |
Wasser | 1945 |
Weitere | 3361 |