s/tremote sensing/remote sensing/gi
Mit Hilfe der Satelliten-Fernerkundung soll ein kontinuierliches Ueberwachungsprogramm zur Erfassung wichtiger glaziologischer Parameter aufgebaut werden, insbesondere von ELA (Equilibrium-Line-Altitude) und AAR (Accumulation Area Ratio). Daraus lassen sich wiederum Gletscher-Massenbilanz-Klimabeziehungen ableiten. Durch laengerfristige Beobachtung des Verhaltens eines Gletschers und durch regionale Vergleiche sollen sowohl Hinweise auf Klimaschwankungen und -veraenderungen abgeleitet, als auch Rueckschluesse auf Massenbilanz der Gletscher und damit auf das Abflussregime gewonnen werden.
Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 10 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessungen (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 105 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.
Auf dem Gebiet der Klimaanpassung werden eine Vielzahl an Daten auf Grundlage einer umfangreichen Analyse der Ist-Situation u. a. in Bezug auf die Temperaturmuster (universelle Hot- und Coldpost), die Landnutzung (z. B. Versiegelungsgrad) und die Blau-Grüne-Infrastruktur (Indikatoren) bereitgestellt. Ferner werden eine Vielzahl an weiteren Daten z. B. zur Bevölkerungsdichte und vulnerablen Nutzungen sowie die daraus abgeleiteten räumlichen Handlungsschwerpunkte für die Klimaanpassung in ganz Hessen bereitgestellt.
Auf dem Gebiet der Klimaanpassung werden eine Vielzahl an Daten auf Grundlage einer umfangreichen Analyse der Ist-Situation u. a. in Bezug auf die Temperaturmuster (universelle Hot- und Coldpost), die Landnutzung (z. B. Versiegelungsgrad) und die Blau-Grüne-Infrastruktur (Indikatoren) bereitgestellt. Ferner werden eine Vielzahl an weiteren Daten z. B. zur Bevölkerungsdichte und vulnerablen Nutzungen sowie die daraus abgeleiteten räumlichen Handlungsschwerpunkte für die Klimaanpassung in ganz Hessen bereitgestellt.
Wichtige Hinweise zum Layer: Grundlage des spezifischen Grünvolumens pro Nettoteilblock bildet das spezifische Grünvolumen als Raster mit einer räumlichen Auflösung von 1m (beachte: Basisdatensatz in GK5 mit 0,5 m Auflösung). Dieses wurde im vorliegenden Layer für die einzelnen Nettoteilblöcke statistisch ausgewertet. Der ausgewiesene Wert entspricht hierbei dem Mittelwert aller im jeweiligen Block enthaltenen Rasterzellen. Ein Rückschluss auf deren Verteilung sowie der vegetativen Strukturelemente im Raum (zum Beispiel nur Wiese und am Flächenrand hohe Vegetation oder Wiese mit Baumbestand) lässt sich daraus nicht ableiten. Für konkretere Aussagen zur Verteilungsstruktur ist das Raster des spezifischen Grünvolumens heranzuziehen. Da Gewässerflächen (hier: Nettoteilblockflächen mit der Nutzungsart Gewässer) mit Ausnahme von Baumkronenüberhängen kein durch Fernerkundung erfassbares Grünvolumen enthalten, bleiben diese Flächen von der Darstellung des Grünvolumens unberücksichtigt. Allgemeine Hintergrundinformationen zum spezifischen Grünvolumen: Das spezifische Grünvolumen als Synonym für Grünvolumenzahl basiert auf dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014 (Beachte: Datenbasis 2009-2011). Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Je nach Kontext wird die Vegetation durch unterschiedliche Bestandsmerkmale beschrieben: - Forstwirtschaft (Baumart, Bestandsdichte, Brusthöhendurchmesser und Überschirmungsgrad) - Botanik (Blattflächenindex - LAI = Leaf Area Index - als Grundlage zur Bestimmung der Belaubungsdichte sowie der fotosynthetischen Aktivität bzw. der Produktionsleistung) - Landwirtschaft (pflanzliche Biomasse, als Maß der Ertragsbilanzierung). Im städtischen Kontext ist aufgrund der Artenvielfalt der Vegetation eine Erfassung von Blattflächenindex oder Biomasse schwierig. Aus diesem Grund spielen einfache, planerisch sinnvolle und vor allem praktikable Indikatoren eine wichtige Rolle. Für die Anwendung in der großmaßstäbigen Bauleit- und Landschaftsplanung wurde deshalb eine rechnerische Bestimmung des Grünvolumens durch die Planungsgemeinschaft GROSSMANN, SCHULZE, POHL entwickelt. Dabei wird das Grünvolumen mittels der flächenbezogenen Grünvolumenzahl (GVZ) beschrieben. Sie wurde als Pendant zu den planungsrelevanten Richtgrößen der baulichen Nutzung, wie der Grundflächenzahl (GRZ) oder der Geschossflächenzahl (GFZ) eingeführt. Es soll neben den vegetationsbezogenen Indikatoren Biotopflächenfaktor (BFF), Bodenfunktionszahl (BFZ) und dem Durchgrünungsgrad die Formulierung von Mindestanforderungen an die Grünausstattung bei der Planung ermöglichen, da sie eine hohe ökologische Aussagekraft besitzt. Was beschreibt die Grünvolumenzahl (GVZ)? Als Grünvolumen wird die Summe des oberirdischen Volumens aller Pflanzen verstanden. Es wird in m³ angegeben. Das Grünvolumen ist durch die äußere Hülle der Vegetation begrenzt, die in der praktischen Erfassung über idealisierte geometrisch primitive Formen beschrieben wird: - Quader: Rasen, Kräuter sowie Sträucher - Kugel: z. B. Eiche - Zylinder: z. B. Pappel - Kegel: z. B. Nadelbaum Aus der Grünvolumensumme aller Vegetationsobjekte in Bezug auf eine definierte Bezugsfläche (z. B. Baublock) ergibt sich die Grünvolumenzahl (GVZ), die alternativ auch als "spezifisches Grünvolumen" bezeichnet wird und die Einheit m³/m² besitzt. Das vorliegende generalisierte Raster (ursprüngliche Auflösung 0,5 m) weist für die einzelnen Zellen (Auflösung jetzt 1 m) bereits das spezifische Grünvolumen (m³/m²) auf, welches zugleich dem absoluten Grünvolumen entspricht. Datengrundlage/Methodik: Grundlage der Bestimmung des Grünvolumens sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Eine detaillierte Beschreibung der Vorgehensweise ist dem zugeordneten Dokument zu entnehmen. Klassifizierung des spezifischen Grünvolumen: - 1. Klasse: vegetationslos (= 0 m³/m²) - 2. Klasse: bis einschließlich 0,1 m³/m² - 3. Klasse: bis einschließlich 0,5 m³/m² - 4. Klasse: bis einschließlich 0,75 m³/m² - 5. Klasse: bis einschließlich 1 m³/m² - 6. Klasse: bis einschließlich 3 m³/m² - 7. Klasse: bis einschließlich 8 m³/m² - 8. Klasse: bis einschließlich 14 m³/m² - 9. Klasse: bis einschließlich 20 m³/m² - 10. Klasse: bis einschließlich 25 m³/m² - 11. Klasse: größer als 25 m³/m² Die Klassifikation in der vorliegenden Abstufung erfolgt aufgrund der im Modell getroffenen Annahmen sowie zur besseren plastischen Darstellung der Vegetationsobjekte. Einschränkung: Entsprechend der vorgesehenen Nutzung für die Umwelt-, Landschafts- und Bauleitplanung ist trotz scheinbar detaillierter Darstellungsmöglichkeit der Anwendungsmaßstab auf 1:5.000 begrenzt.
Wichtige Hinweise zum Layer: Grundlage des spezifischen Grünvolumens pro Nettoteilblock bildet das spezifische Grünvolumen als Raster mit einer räumlichen Auflösung von 1m (beachte: Basisdatensatz in GK5 mit 0,5 m Auflösung). Dieses wurde im vorliegenden Layer für die einzelnen Nettoteilblöcke statistisch ausgewertet. Der ausgewiesene Wert entspricht hierbei dem Mittelwert aller im jeweiligen Block enthaltenen Rasterzellen. Ein Rückschluss auf deren Verteilung sowie der vegetativen Strukturelemente im Raum (zum Beispiel nur Wiese und am Flächenrand hohe Vegetation oder Wiese mit Baumbestand) lässt sich daraus nicht ableiten. Für konkretere Aussagen zur Verteilungsstruktur ist das Raster des spezifischen Grünvolumens heranzuziehen. Da Gewässerflächen (hier: Nettoteilblockflächen mit der Nutzungsart Gewässer) mit Ausnahme von Baumkronenüberhängen kein durch Fernerkundung erfassbares Grünvolumen enthalten, bleiben diese Flächen von der Darstellung des Grünvolumens unberücksichtigt. Allgemeine Hintergrundinformationen zum spezifischen Grünvolumen: Das spezifische Grünvolumen als Synonym für Grünvolumenzahl basiert auf dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014 (Beachte: Datenbasis 2009-2011). Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Je nach Kontext wird die Vegetation durch unterschiedliche Bestandsmerkmale beschrieben: - Forstwirtschaft (Baumart, Bestandsdichte, Brusthöhendurchmesser und Überschirmungsgrad) - Botanik (Blattflächenindex - LAI = Leaf Area Index - als Grundlage zur Bestimmung der Belaubungsdichte sowie der fotosynthetischen Aktivität bzw. der Produktionsleistung) - Landwirtschaft (pflanzliche Biomasse, als Maß der Ertragsbilanzierung). Im städtischen Kontext ist aufgrund der Artenvielfalt der Vegetation eine Erfassung von Blattflächenindex oder Biomasse schwierig. Aus diesem Grund spielen einfache, planerisch sinnvolle und vor allem praktikable Indikatoren eine wichtige Rolle. Für die Anwendung in der großmaßstäbigen Bauleit- und Landschaftsplanung wurde deshalb eine rechnerische Bestimmung des Grünvolumens durch die Planungsgemeinschaft GROSSMANN, SCHULZE, POHL entwickelt. Dabei wird das Grünvolumen mittels der flächenbezogenen Grünvolumenzahl (GVZ) beschrieben. Sie wurde als Pendant zu den planungsrelevanten Richtgrößen der baulichen Nutzung, wie der Grundflächenzahl (GRZ) oder der Geschossflächenzahl (GFZ) eingeführt. Es soll neben den vegetationsbezogenen Indikatoren Biotopflächenfaktor (BFF), Bodenfunktionszahl (BFZ) und dem Durchgrünungsgrad die Formulierung von Mindestanforderungen an die Grünausstattung bei der Planung ermöglichen, da sie eine hohe ökologische Aussagekraft besitzt. Was beschreibt die Grünvolumenzahl (GVZ)? Als Grünvolumen wird die Summe des oberirdischen Volumens aller Pflanzen verstanden. Es wird in m³ angegeben. Das Grünvolumen ist durch die äußere Hülle der Vegetation begrenzt, die in der praktischen Erfassung über idealisierte geometrisch primitive Formen beschrieben wird: - Quader: Rasen, Kräuter sowie Sträucher - Kugel: z. B. Eiche - Zylinder: z. B. Pappel - Kegel: z. B. Nadelbaum Aus der Grünvolumensumme aller Vegetationsobjekte in Bezug auf eine definierte Bezugsfläche (z. B. Baublock) ergibt sich die Grünvolumenzahl (GVZ), die alternativ auch als "spezifisches Grünvolumen" bezeichnet wird und die Einheit m³/m² besitzt. Das vorliegende generalisierte Raster (ursprüngliche Auflösung 0,5 m) weist für die einzelnen Zellen (Auflösung jetzt 1 m) bereits das spezifische Grünvolumen (m³/m²) auf, welches zugleich dem absoluten Grünvolumen entspricht. Datengrundlage/Methodik: Grundlage der Bestimmung des Grünvolumens sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Eine detaillierte Beschreibung der Vorgehensweise ist dem zugeordneten Dokument zu entnehmen. Klassifizierung des spezifischen Grünvolumen: - 1. Klasse: vegetationslos (= 0 m³/m²) - 2. Klasse: bis einschließlich 0,1 m³/m² - 3. Klasse: bis einschließlich 0,5 m³/m² - 4. Klasse: bis einschließlich 0,75 m³/m² - 5. Klasse: bis einschließlich 1 m³/m² - 6. Klasse: bis einschließlich 3 m³/m² - 7. Klasse: bis einschließlich 8 m³/m² - 8. Klasse: bis einschließlich 14 m³/m² - 9. Klasse: bis einschließlich 20 m³/m² - 10. Klasse: bis einschließlich 25 m³/m² - 11. Klasse: größer als 25 m³/m² Die Klassifikation in der vorliegenden Abstufung erfolgt aufgrund der im Modell getroffenen Annahmen sowie zur besseren plastischen Darstellung der Vegetationsobjekte. Einschränkung: Entsprechend der vorgesehenen Nutzung für die Umwelt-, Landschafts- und Bauleitplanung ist trotz scheinbar detaillierter Darstellungsmöglichkeit der Anwendungsmaßstab auf 1:5.000 begrenzt.
Wichtige Hinweise zum Layer: Grundlage des spezifischen Grünvolumens pro Nettoteilblock bildet das spezifische Grünvolumen als Raster mit einer räumlichen Auflösung von 1m (beachte: Basisdatensatz in GK5 mit 0,5 m Auflösung). Dieses wurde im vorliegenden Layer für die einzelnen Nettoteilblöcke statistisch ausgewertet. Der ausgewiesene Wert entspricht hierbei dem Mittelwert aller im jeweiligen Block enthaltenen Rasterzellen. Ein Rückschluss auf deren Verteilung sowie der vegetativen Strukturelemente im Raum (zum Beispiel nur Wiese und am Flächenrand hohe Vegetation oder Wiese mit Baumbestand) lässt sich daraus nicht ableiten. Für konkretere Aussagen zur Verteilungsstruktur ist das Raster des spezifischen Grünvolumens heranzuziehen. Da Gewässerflächen (hier: Nettoteilblockflächen mit der Nutzungsart Gewässer) mit Ausnahme von Baumkronenüberhängen kein durch Fernerkundung erfassbares Grünvolumen enthalten, bleiben diese Flächen von der Darstellung des Grünvolumens unberücksichtigt. Allgemeine Hintergrundinformationen zum spezifischen Grünvolumen: Das spezifische Grünvolumen als Synonym für Grünvolumenzahl basiert auf dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014 (Beachte: Datenbasis 2009-2011). Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Je nach Kontext wird die Vegetation durch unterschiedliche Bestandsmerkmale beschrieben: - Forstwirtschaft (Baumart, Bestandsdichte, Brusthöhendurchmesser und Überschirmungsgrad) - Botanik (Blattflächenindex - LAI = Leaf Area Index - als Grundlage zur Bestimmung der Belaubungsdichte sowie der fotosynthetischen Aktivität bzw. der Produktionsleistung) - Landwirtschaft (pflanzliche Biomasse, als Maß der Ertragsbilanzierung). Im städtischen Kontext ist aufgrund der Artenvielfalt der Vegetation eine Erfassung von Blattflächenindex oder Biomasse schwierig. Aus diesem Grund spielen einfache, planerisch sinnvolle und vor allem praktikable Indikatoren eine wichtige Rolle. Für die Anwendung in der großmaßstäbigen Bauleit- und Landschaftsplanung wurde deshalb eine rechnerische Bestimmung des Grünvolumens durch die Planungsgemeinschaft GROSSMANN, SCHULZE, POHL entwickelt. Dabei wird das Grünvolumen mittels der flächenbezogenen Grünvolumenzahl (GVZ) beschrieben. Sie wurde als Pendant zu den planungsrelevanten Richtgrößen der baulichen Nutzung, wie der Grundflächenzahl (GRZ) oder der Geschossflächenzahl (GFZ) eingeführt. Es soll neben den vegetationsbezogenen Indikatoren Biotopflächenfaktor (BFF), Bodenfunktionszahl (BFZ) und dem Durchgrünungsgrad die Formulierung von Mindestanforderungen an die Grünausstattung bei der Planung ermöglichen, da sie eine hohe ökologische Aussagekraft besitzt. Was beschreibt die Grünvolumenzahl (GVZ)? Als Grünvolumen wird die Summe des oberirdischen Volumens aller Pflanzen verstanden. Es wird in m³ angegeben. Das Grünvolumen ist durch die äußere Hülle der Vegetation begrenzt, die in der praktischen Erfassung über idealisierte geometrisch primitive Formen beschrieben wird: - Quader: Rasen, Kräuter sowie Sträucher - Kugel: z. B. Eiche - Zylinder: z. B. Pappel - Kegel: z. B. Nadelbaum Aus der Grünvolumensumme aller Vegetationsobjekte in Bezug auf eine definierte Bezugsfläche (z. B. Baublock) ergibt sich die Grünvolumenzahl (GVZ), die alternativ auch als "spezifisches Grünvolumen" bezeichnet wird und die Einheit m³/m² besitzt. Das vorliegende generalisierte Raster (ursprüngliche Auflösung 0,5 m) weist für die einzelnen Zellen (Auflösung jetzt 1 m) bereits das spezifische Grünvolumen (m³/m²) auf, welches zugleich dem absoluten Grünvolumen entspricht. Datengrundlage/Methodik: Grundlage der Bestimmung des Grünvolumens sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Eine detaillierte Beschreibung der Vorgehensweise ist dem zugeordneten Dokument zu entnehmen. Klassifizierung des spezifischen Grünvolumen: - 1. Klasse: vegetationslos (= 0 m³/m²) - 2. Klasse: bis einschließlich 0,1 m³/m² - 3. Klasse: bis einschließlich 0,5 m³/m² - 4. Klasse: bis einschließlich 0,75 m³/m² - 5. Klasse: bis einschließlich 1 m³/m² - 6. Klasse: bis einschließlich 3 m³/m² - 7. Klasse: bis einschließlich 8 m³/m² - 8. Klasse: bis einschließlich 14 m³/m² - 9. Klasse: bis einschließlich 20 m³/m² - 10. Klasse: bis einschließlich 25 m³/m² - 11. Klasse: größer als 25 m³/m² Die Klassifikation in der vorliegenden Abstufung erfolgt aufgrund der im Modell getroffenen Annahmen sowie zur besseren plastischen Darstellung der Vegetationsobjekte. Einschränkung: Entsprechend der vorgesehenen Nutzung für die Umwelt-, Landschafts- und Bauleitplanung ist trotz scheinbar detaillierter Darstellungsmöglichkeit der Anwendungsmaßstab auf 1:5.000 begrenzt. Die Karte soll Aufschluss über die Verteilung des Grünvolumens geben. Hieraus ergeben sich Rückschlüsse aus stadtökologischer und sozialer Sicht. Dieser Datensatz kann gemäß den Nutzungsbestimmungen Datenlizenz Deutschland - Namensnennung - Version 2.0 (http://www.govdata.de/dl-de/by-2-0) genutzt werden. Eine Haftung für die Richtigkeit der Daten wird nicht übernommen, insbesondere übernimmt die Landeshauptstadt Dresden keine Haftung für mittels dieser Daten erhobene oder berechnete Ergebnisse Dritter.
Deutschland möchte mit der Fortführung der Forschung an einer Methode zur möglichst automatisierten Erkennung von Müll an arktischen Küsten weiterhin die Arktischen Staaten dabei unterstützen, ein arktisweit einheitliches (oder zumindest vergleichbares) Verfahren zu etablieren, das es ermöglicht, den Umweltzustand arktischer Küstenabschnitte hinsichtlich des Vorhandenseins von Müll jetzt und in Zukunft zu erfassen und zu bewerten. Ziel des Projektes ist es, eine Methode zu entwickeln, mittels derer Küsten- und Stranduntersuchungen in der Arktis per Drohne durchgeführt werden können. Bei der Erarbeitung der entsprechenden Methodik liegt der Fokus auf der Ermittlung arktisspezifischer Parameter und der automatisierten Auswertung gewonnener Daten. Die Konzeption soll zunächst an geeigneten Teststränden oder Gebieten in Deutschland erfolgen und dann in der Arktis validiert werden. Des Weiteren sind Konzepte zu erarbeiten, wie beispielsweise arktische Gemeinden, lokale Forschungseinrichtungen oder auch andere Stakeholder wie etwa Reiseunternehmen, die im Arktisraum agieren, die Methode anwenden können. Im Zuge der automatisierten Auswertung soll eine KI entwickelt und trainiert werden, mit der die generelle Detektion von Kunststoffmüll an Küsten und Stränden in der Arktis möglich ist und ggf. auch eine automatisierte Kategorisierung der Müllteile erfolgen kann.
Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.
| Origin | Count |
|---|---|
| Bund | 2940 |
| Europa | 2 |
| Global | 15 |
| Kommune | 10 |
| Land | 392 |
| Schutzgebiete | 191 |
| Wirtschaft | 3 |
| Wissenschaft | 318 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Agriculture | 1 |
| Data and measurements | 286 |
| Event | 8 |
| Repository | 7 |
| Support program | 2581 |
| Text | 95 |
| Unknown | 386 |
| License | Count |
|---|---|
| Closed | 120 |
| Open | 2944 |
| Unknown | 118 |
| open | 182 |
| Language | Count |
|---|---|
| English | 1048 |
| German | 2608 |
| Other | 2 |
| Resource type | Count |
|---|---|
| Archive | 32 |
| Document | 63 |
| File | 263 |
| Image | 43 |
| None | 2129 |
| Unknown | 2 |
| Web service | 116 |
| Website | 880 |
| Topic | Count |
|---|---|
| Air | 215 |
| Creatures and habitats | 1761 |
| Other | 3364 |
| People and the environment | 1432 |
| Soil | 175 |
| Water | 378 |