API src

Found 2796 results.

Similar terms

s/weatherforecast/weather forecast/gi

IS FSK 5 RCP8.5 Forstliche Standortkarte 1 : 5.000 von NRW, auf Grundlage der Bodenkarte 1 : 5.000 und Klimaprojektionen nach Szenario RCP8.5 - Datensatz

Der Datensatz zeigt die Standorteigenschaften für Waldstandorte in NRW im Maßstab 1 : 5.000 auf Basis von Projektionsdaten nach Klimaszenario RCP8.5 für den Zeitraum 2071-2100. Es werden der Gesamtwasserhaushalt und die natürliche Nährstoffversorgung der Standorte dargestellt. Abgeleitet vom Gesamtwasserhaushalt wird die Dürreempfindlichkeit der Waldstandorte dargestellt. In weiteren Layern werden die Standorteigenschaften aggregiert zu Standorttypen nach Waldbaukonzept NRW sowie die Standorteignung von 16 wichtigen Waldbaumarten nach den Kriterien des Waldbaukonzeptes NRW dargestellt. Die Auskunftsseite des WMS stellt die Eigenschaften für jede Fläche dar und bietet Verknüpfungen zu den Informationen des Waldbaukonzeptes NRW. Es handelt sich um eine Auswertung der Bodenkarte von NRW 1 : 5.000 in Verbindung mit Klimaprojektionsdaten für NRW für das Szenario RCP8.5 des Deutschen Wetterdienstes (2071-2100, DWD) und Reliefdaten (DGM10, Geobasis NRW). Es werden alle Bodenflächen dargestellt, von denen zum Zeitpunkt der Bereitstellung eine digitale Bodenkarte zur Forstlichen Standorterkundung - BK5 F - vorliegt.

IS FSK 5 RCP4.5 Forstliche Standortkarte 1 : 5.000 von NRW, auf Grundlage der Bodenkarte 1 : 5.000 und Klimaprojektionen nach Szenario RCP4.5 - Datensatz

Der Datensatz zeigt die Standorteigenschaften für Waldstandorte in NRW im Maßstab 1 : 5.000 auf Basis von Projektionsdaten nach Klimaszenario RCP4.5 für den Zeitraum 2071-2100. Es werden der Gesamtwasserhaushalt und die natürliche Nährstoffversorgung der Standorte dargestellt. Abgeleitet vom Gesamtwasserhaushalt wird die Dürreempfindlichkeit der Waldstandorte dargestellt. In weiteren Layern werden die Standorteigenschaften aggregiert zu Standorttypen nach Waldbaukonzept NRW sowie die Standorteignung von 16 wichtigen Waldbaumarten nach den Kriterien des Waldbaukonzeptes NRW dargestellt. Die Auskunftsseite des WMS stellt die Eigenschaften für jede Fläche dar und bietet Verknüpfungen zu den Informationen des Waldbaukonzeptes NRW. Es handelt sich um eine Auswertung der Bodenkarte von NRW 1 : 5.000 in Verbindung mit Klimaprojektionsdaten für NRW für das Szenario RCP4.5 des Deutschen Wetterdienstes (2071-2100, DWD) und Reliefdaten (DGM10, Geobasis NRW). Es werden alle Bodenflächen dargestellt, von denen zum Zeitpunkt der Bereitstellung eine digitale Bodenkarte zur Forstlichen Standorterkundung - BK5 F - vorliegt.

Standortpotenziale Grundwasserabhängige Landökosysteme in Niedersachsen 1 : 50 000 - Bewertung

Die Kulisse „Standortpotenziale Grundwasserabhängige Landökosysteme“ weist für ganz Niedersachsen Flächen mit dem abiotischen Potenzial zur Etablierung von grundwasserabhängigen Landökosystemen im mittleren Maßstab (1:50.000) aus. Grundwasserabhängige Landökosysteme sind ein wichtiger Lebens- und Rückzugsort für seltene und bedrohte Tier- und Pflanzenarten. Deshalb stehen Grundwasserabhängige Landökosysteme unter besonderen Schutz und müssen in Wasserrechts- und Planungsverfahren Berücksichtigung finden. Die Kulisse bewertet die abiotischen Standortfaktoren Boden, Grundwasser, Klima und Landnutzung, auf Basis der BK50, Klimadaten des Deutschen Wetterdienstes (DWD) für die Periode 1971 -2000 und des Digitalen Landschaftsmodells 1: 25.000 (DLM25). Die Kulisse dient als Überblick und stellt alle Flächen mit einem Standortpotenzial dar unabhängig davon, ob sich auf den ausgewiesenen Standorten aktuell ein grundwasserabhängiges Biotop etabliert hat oder nicht. Grundwasserabhängige Landökosysteme sind durch die Absenkung des Grundwassers und Veränderungen des Klimas gefährdet. Zur Bewertung der Vulnerabilität gegenüber diesen Gefahren wurden mit Hilfe von bodenwasserhaushaltlichen Parametern eine Methode entwickelt. Das Ergebnis der Methode ist die Bewertung der Güte des Standortpotentials gwaLÖS, die in diesem Thema unter aktuellen Bedingungen (Klima und Grundwasserständen) dargestellt wird. BUG, J., PLINKE, A-K., AFFELT, L. & HARDERS, D. (2021): Standortpotenziale Grundwasserabhängige Landökosysteme (gwaLÖS) - Erläuterung zur Kulissenerstellung und Bewertung der Vulnerabilität. In: GeoBerichte 43, Hannover.

Gebiete innerhalb der Nitratkulisse kleiner 550 mm langjähriges Niederschlagsmittel

Zur Erfüllung des Ziels der Düngeverordnung (DüV) des Bundes vom 26.05.2017 (BGBl. I S. 1305), zuletzt geändert am 10.08.2021 (BGBl. I S. 3436), die den ressourcenschonenden Einsatz von Pflanzennährstoffen und die Erfüllung der Anforderungen des Gewässerschutzes vorsieht, ist am 30.11.2022 die Erste Verordnung zur Änderung der Thüringer Düngeverordnung (ThürDüV) in Kraft getreten. In Thüringen ist eine Gebietskulisse zum Schutz der Gewässer vor Verunreinigung durch Nitrat (Nitratkulisse) ausgewiesen um den Nährstoffeintrag aus der Landwirtschaft in diesen belasteten Gebieten zu senken. Nach § 13a Abs. 2 Nr. 7 DüV dürfen in diesen Gebieten Düngemittel mit einem wesentlichen Gehalt an Stickstoff im Falle des Anbaus von Kulturen mit einer Aussaat oder Pflanzung nach dem 01.02. nur aufgebracht werden, wenn auf der betroffenen Fläche im Herbst des Vorjahres eine Zwischenfrucht angebaut und nicht vor dem 15.01. umgebrochen wurde. Davon ausgenommen sind Flächen, auf denen Kulturen nach dem 01.10. geerntet werden und Flächen in Gebieten, in denen der jährliche Niederschlag im langjährigen Mittel weniger als 550 mm beträgt. Die ausgewiesenen landwirtschaftlichen Flächen mit einem langjährigen mittleren Jahresniederschlag kleiner 550 mm sind die Referenzparzellen entsprechend der Thüringer Verordnung zur Umsetzung der gemeinsamen Agrarpolitik in der jeweils gültigen Fassung, die durch den Feldblock identifiziert werden. Landwirtschaftliche Flächen, die zu mindestens der Hälfte ihrer Fläche in dem vom Deutschen Wetterdienst ausgewiesenem Gebiet liegen, bilden die Gebiete mit langjährigem mittleren Jahresniederschlag kleiner 550 mm. Die Gebiete basieren auf der Bereitstellung des 30-jährigen Mittels (1991-2020) zum langjährigem mittleren Jahresniederschlag kleiner 550 mm. Diese behalten voraussichtlich für das aktuelle Jahrzehnt ihre Gültigkeit. Die Ausweisung dieser Gebietskulisse ist an die Nitratkulisse gebunden und wird nur für die betroffenen Feldblöcke angegeben. Die Geodaten der betroffenen Referenzparzellen werden jährlich zum 01.02. berechnet und in digitaler Form im Geoportal Thüringen veröffentlicht.

Gesundheitsrisiken durch Hitze

<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten.</p><p>Informationen zur interaktiven Karte</p><p>Quellen: ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ 2000-2024 – ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠/Climate Data Center, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2000-2024 – DWD/Climate Data Center; Daten für 2024 – Persönliche Mitteilung des DWD vom 15.05.2025.</p><p>Bearbeitung: Umweltbundesamt, FG I 1.6/FG I 1.7</p><p>Gesundheitsrisiko Hitze</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a>⁠ 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren&nbsp;(vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich.</p><p><em>Tipps zum Weiterlesen:</em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. &amp; Mücke, H.-G. (2017): ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>

Resiliente Abfluss- und Stauregelung der Wasserstraßen bei extremen Niederschlagsereignissen

Abflussprognosen zur Bewältigung von Extremwetterlagen Um das Transportaufkommen in Deutschland auch unter schwierigen Bedingungen zu bewältigen und dies aufrecht zu erhalten bzw. zu steigern, sind verkehrsträgerübergreifende Lösungsansätze notwendig. Ziel dieses Projekt ist es, die Resilienz und die Verfügbarkeit des Verkehrsträgers Wasserstraße bei extremen Wetterereignissen zu erhöhen. Aufgabenstellung und Ziel Etwa 3.000 km der Bundeswasserstraßen sind mit Staustufen ausgebaut, die meist aus einem beweglichen Wehr, einer Schleuse und einem Laufwasserkraftwerk bestehen. Durch das Ändern des Abflusses über das Kraftwerk und über das Wehr hält ein lokaler Regler den gewünschten Oberwasserstand innerhalb der vorgegebenen Stauzieltoleranz. Die Abfluss- und Stauregelung soll dabei mehrere, mitunter gegensätzliche Ziele erfüllen: Einhaltung des Stauziels innerhalb der festgelegten Toleranz, Verminderung von Abflussschwankungen, optimale Nutzung der Wasserkraft und Minimierung des Verschleißes der Wehrverschlüsse. Im Zuge des Klimawandels ist mit einer Zunahme extremer Wetterereignisse zu rechnen. Die Abfluss- und Stauregelung steht gerade in Niedrigwasserperioden vor wachsenden Herausforderungen. Schwankungen des Abflusses sind in diesen Phasen schwierig auszugleichen und Über- bzw. Unterschreitungen der Stauzieltoleranz sind nicht auszuschließen. Dadurch entsteht eine Gefahr für die Schifffahrt. Ziel des vorgestellten Vorhabens ist es, anhand einer fundierten Datenanalyse und der Methode des maschinellen Lernens Zusammenhänge zwischen Niederschlagsereignissen und Abflussschwankungen vertieft zu untersuchen. Zusätzlich sollen Abflussprognosen erstellt werden, welche die Abfluss- und Stauregelung unterstützen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Verwendung maschinellen Lernens für Abflussvorhersagen auf der Basis von Niederschlags- und Zuflussdaten stellt ein vielversprechendes Werkzeug für die WSV dar. Prognosen schaffen einen vorausschauenden Handlungsspielraum für die Abfluss- und Stauregelung, sodass starke Wasserstandsund Abflussschwankungen minimiert und damit die Sicherheit und Leichtigkeit der Schifffahrt erhöht werden. Die Resilienz der Wasserstraße wird dadurch auch unter den zunehmenden Auswirkungen des Klimawandels gesteigert. Untersuchungsmethoden Das Verfahren wird exemplarisch an einer Stauhaltung der Mosel getestet. Die Niederschlagsdaten des Einzugsgebiets der Stauhaltung werden vom Deutschen Wetterdienst im Rahmen der Zusammenarbeit im BMDV-Expertennetzwerk bereitgestellt. Die Pegeldaten der oberliegenden Stauhaltung sowie die der untersuchten Stauhaltung selbst werden von der WSV zur Verfügung gestellt. In einem ersten Schritt werden die Pegeldaten untersucht. Anhand einer Kreuzkorrelation können Abhängigkeiten zwischen dem oberliegenden Pegel und dem Pegel in der untersuchten Stauhaltung aufgezeigt werden. In einem weiteren Schritt werden ebenfalls die Niederschlags- und Wehrdaten betrachtet und deren Zusammenhang mit den Pegeldaten untersucht. Zusätzlich wird eine Methode erarbeitet, um Wasserstandsschwankungen so zu filtern, dass die Werte möglichst unbeeinflusst von Schleusungen und Schifffahrt sind. Im Anschluss an die Aufbereitung der Daten wird nach einer geeigneten Methode des Maschinellen Lernens (ML) gesucht. Dabei werden unterschiedliche ML-Modelle in Python implementiert und trainiert. Der vielversprechendste Modelltyp soll weiter genutzt und mit unterschiedlichen Parametrierungen getestet werden. Hierbei wird immer auf einen Prognosezeitraum von drei Stunden hingearbeitet. Für die Abfluss- und Stauregelung ist eine dreistündige Prognose wünschenswert, um Schwankungen des Abflusses effektiv zu bewältigen.

Parametrisierung des Strahlungstransports in einem Zirkulationsmodell des Deutschen Wetterdienstes

Es wird eine zeitlich sehr schnelle Routine zur genauen Berechnung des Transports solarer und infraroter Strahlung in der bewoelkten Erdatmosphaere entwickelt. Die Rechenzeit wird nicht mehr als 15 Millisekunden pro Profilbetragen. Das Verfahren beruht auf einer modifizierten Zweistromloesung der Strahlungstransportgleichung, in der durchbrochene Bewoelkung durch Modifizierung der Randbedingungen beruecksichtigt worden ist.

Flood risk in a changing climate (CEDIM)

Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.

Entwicklung der Fehlerschätzungsmethode für Datenassimilation für allgemeine Ozean-Zirkulationsmodelle

Die 4D-Var Datenassimilation (4D-var DA) ist eine spezielle Methode, die zur Initialisierung von Klima- und Wettervorsagen durch die Schätzung von Klimamodellparametern benutzt wird, in dem Modelle an beobachtende Daten angepasst werden. Aus verschiedenen Gründen führen DA unvermeidliche methodische Fehler ein, die sich auf die Genauigkeit der Modellvorhersagen auswirken. Aktuelle Methoden zur Fehlerkorrektur brauchen erhebliche Computerressourcen. Dies ist ein Grund, warum die Verwendung dieser Methoden in der Klimamodellierung begrenzt ist und sie nur in vereinfachten Versionen angewandt werden. Die Entwicklung einer konzeptuell neuartigen, robusten und effizienten, nichtlinear-variationellen Fehlerschätzungsmethode (NOVFEM) ist Ziel dieses Projekts. Diese Methode wird Fehler von DA Methoden schätzen und die notwendigen Korrekturen bestimmen. Im Besonderen ist es geplant, VOVFEM im Rahmen einer Anwendung in Klimavorhersagesystemen zu entwickeln. Der Vorteil der vorgeschlagenen Methode ist, dass der Algorithmus auf einer abstrakten mathematischen Formulierung basiert und deshalb in vielen geophysikalischen Bereichen angewandt werden kann. Eine weitere Innovation dieses Projekts ist die Entwicklung einer Methode zur schnellen und einfachen Berechnung von inversen Kovarianzmatrizen, die z. B. Anwendung in DA finden. Die vorgeschlagenen Methode ist im Vergleich mit existieren Methoden effizienter. Es wird erwartet, dass die theoretischen Ergebnisse dieses Projekt national und international veröffentlicht werden und ein freier Zugang zur NOVFEM Software wird bereitgestellt werden.

Parkraumbeteiligung an der marktbasierten Flexibilitätsbereitstellung zur Netzstabilisierung bei steigender Integration von erneuerbaren Energien, Teilvorhaben ParkHere: Flexibilitätsprognose mit einem Reservierungs-, Parken-, Laden- und Bezahlsystem

Flexibilitäten durch batterieelektrische Fahrzeuge aus aggregiertem Parkraum sind schwierig zu prognostizieren. Eine Möglichkeit besteht darin, basierend auf historischen Daten Prognosemodelle zu entwickeln und mit den prognostizierten verfügbaren Flexibilitäten am Strommarkt zu agieren. Jedoch müssen die aus historischen Daten prognostizierten Flexibilitäten mit hohen Sicherheitsfaktoren versehen werden, da die tatsächliche Verfügbarkeit nicht bekannt ist. Zudem muss darauf geachtet, dass nicht etwa Ferienzeit, ein lokaler Feiertag, Betriebsurlaub, lokale oder großflächige Parkplatzsperrung, defekte Ladepunkte oder ein anderes Ereignis die Prognose ungültig macht. An dieser Stelle kann das Reservierungssystem von ParkHere einen wichtigen Beitrag zur Prognosequalität leisten. Jeder Parkende und Elektromobilist reserviert vorab basierend auf persönlichen Planungen einen Stellplatz mit oder ohne Ladepunkt - somit sind alle Ereignisse wie Ferien, Feiertage, Wochenende, Flächensperrungen, Wetter, defekte Ladepunkte etc. bereits in der Prognose berücksichtigt.

1 2 3 4 5278 279 280