RECONNECT konzentriert sich auf die Entkopplung der Erhaltung der biologischen Vielfalt von anderen Anliegen an Landschaften und Gesellschaften. Fragmentierung, Konflikt und Entkopplung können institutioneller, ökologischer und sozialer Natur sein. Dies äußert sich in unterbrochenen ökologischen Strömen durch Habitatnetzwerke, in isolierter sektoraler Planung und in pluralen Lebensstilen und Werten - was zu Spannungen zwischen Erhaltungs-, Gerechtigkeits- und Produktionszielen führt. Wir werden mit Stakeholdern zusammenarbeiten, um anhand von vier Fallbeispielen fundiertes Wissen über die Möglichkeiten des Umgangs mit institutionellen, ökologischen und sozialen Grenzen zu gewinnen. Untersuchungsgebiete in Frankreich, Deutschland, Südafrika und Schweden erstrecken sich entlang von Stadt-/Land-Gradienten mit kontrastierenden Arten des Managements von Schutzgebieten und umliegenden Landschaften. Der inter- und transdisziplinäre "Wiederverkopplungs"-Ansatz wird erreicht durch 1) die Entwicklung eines kohärenten Satzes von Instrumenten und Prozessen zur systematischen Identifizierung und Bewertung der Verbindungen zwischen Ökosystemen, gemeinschaftlichen Werten und verschiedenen institutionellen Arrangements; und 2) die Entwicklung von Governance-Modellen und -Praktiken zum Offenlegen und zur Bewältigung von Spannungen sowie zur Verbindung von Menschen und Ökosystemen. Sozial-ökologische System- und Governance-Forscher werden im Arbeitspaket (WP) 1 den sozial-ökologischen Kontext für den Schutz der biologischen Vielfalt bewerten und integrierte Governance-Optionen für die Durchführung wirksamer Erhaltungsmaßnahmen identifizieren. Naturschutzbiologen und funktionelle Ökologen nutzen in WP2 ihre Fähigkeiten in der Modellierung von Biodiversität und Ökosystemdienstleistungen, um die verschiedenen Dimensionen der funktionellen Konnektivität zu quantifizieren. In WP3 erforschen Landschaftsökologen und Geographen die Werte der Natur und identifizieren Synergien und Bereiche für die Wiedervernetzung. In WP4 versuchen Experten für institutionelle Analyse und Wissenskooperation, verschiedene Bereiche für Zusammenarbeit und Konfliktmanagement zu bewerten. In WP5 führen Experten für Nachhaltigkeitswissenschaften und transdisziplinäre Deliberation die Synthese der Projektergebnisse durch. Spezialisten für Naturschutzpolitik und Kommunikation werden in WP6 die Ergebnisse über einschlägige Kommunikationsplattformen wie PANORAMA und das EU Knowledge Centre for Biodiversity verbreiten. Gemeinsam werden die Arbeitspakete sektorübergreifende Governance in die Umsetzung des Globalen Biodiversitätsrahmens nach 2020 einbringen.
Wissenschaftliche Ziele: Ein Modell zum Verständnis des Genflusses von bisexuellen Ursprungspopulationen zu parthenogenen Pionierpopulationen soll entwickelt werden, mit dem die Resistenz solcher Netzwerke gegen genetische Driftphänomene analysiert werden kann. Damit kann erstmals die Bedeutung von Trittsteinhabitaten in ihrer Gesamtheit analysiert werden, da es im vorliegenden Fall möglich sein sollte, aufgrund ihrer besonderen Merkmale (Brackwasserstandorte im Binnenland - selten und aufgrund ihrer früheren Bedeutung als Salzquelle gut dokumentiert) alle derartigen sites zu identifizieren und einzubeziehen. Darüber hinaus wird aus den Ergebnissen der genetischen Analysen ein Beitrag zur Entschlüsselung des Auslösers für den Übergang zur Parthenogenese erwartet, der weiterführende molekularbiologische Grundlagenforschung ermöglicht. Gesellschaftlich/politisch: Durch das Verständnis der Konnektivität zwischen den bisexuellen Ursprungspopulationen und ihren parthenogenetischen Tochterpopulationen wird die Bedeutung der Aufrechterhaltung des Genflusses zwischen ihnen quantifiziert. Damit kann die Effizienz von Erhaltungsmaßnahmen durch die Identifizierung wichtiger Trittsteinhabitate bzw. Maßnahmen zur Wiederherstellung des genetischen Austauschs verbessert werden. Die Entwicklung von Mehrzweck-Managementkonzepten für Schutzgebiete, die den Schutz von weitgehend unterschiedlichen Artengruppen (in diesem Fall Charophyten und Vögel) ermöglichen, wird die Akzeptanz und Effizienz derartiger Unterschutzstellungen erhöhen. In Bezug auf die Zielarten dieses Vorschlags wird das Projekt einen Beitrag zu den Anforderungen der EU-Wasserrahmenrichtlinie leisten, indem es ein entscheidendes Element (Lebensraumingenieur) aquatischer Ökosysteme schützt, das nachweislich in der Lage ist, den guten Umweltzustand bereits gestörter Systeme zu stabilisieren.
A3.1 Räumliche und zeitliche Auflösung der 13CO2- und VOC-Flüsse im BlattWir erfassen die räumliche und zeitliche Dynamik des Gaswechsels in Blättern innerhalb Baumkronen und Baumarten in einem Mischbestand. Durch die Messung der natürliche 13C-Isotopen Diskrimination können Anpassungen der Wassernutzungseffizienz und Umwelteinflüsse auf die Photosynthese entschlüsselt werden. Blattemissionen flüchtiger organischer Verbindungen (VOC) sind weitere Indikatoren für biotische und abiotische Stresse, so dass Hot Spots und Hot Moments in Echtzeit erfasst werden können. A3.2 Entwicklung von miniaturisierten Blattküvetten und kompakten Laser-spektroskopen für 13CO2-IsotopeWir entwickeln Mikro-Gasküvetten, welche in großer Zahl eingesetzt werden sollen, um die 3D-Variabilität der 13CO2-Isotope innerhalb des Kronendachs zu überwachen. Sie sind mit einem integrierten Öffnungs- und Schließ-mechanismus ausgestattet und werden mit mehreren kleinen, kostengünstigen Kohlenstoffisotopen-Laserspektroskopen verbunden, die auch die H2O-Flüsse in den Blättern messen werden. Da die Laserspektroskope nicht in ähnlichem Maße miniaturisiert werden können wie die Blattküvetten, werden sie an einer zentralen Stelle platziert und durch Schläuche verbunden.
Die menschliche Gesellschaft zeichnet sich durch komplexe soziale Organisationsformen aus, die im Laufe der Zeit weltweit vielfältige Siedlungsmuster hervorgebracht haben. Stadtgrenzen markieren eine willkürliche Trennung zwischen einem (urbanen) Innenraum unter starker menschlicher Kontrolle und einem (ruralen) Äußeren, das stärker natürlichen, biophysikalischen Prozessen ausgesetzt ist. Tatsächlich sind aber beide Räume seit jeher eng miteinander verknüpft, und werden mit immer intensiverer Nutzung natürlicher Ressourcen zunehmend durch rural-urbane Transformationsprozesse geprägt. Im Anthropozän haben Urbanisierung und die damit verbundenen sozialen und ökologischen Veränderungen globale Dimensionen erreicht. "Rurales" und "Urbanes" gehen dabei auf verschiedenen Skalenebenen immer wieder neue Beziehungen ein und werden zu einer sich oft selbst organisierenden Einheit von großer wissenschaftlicher, gesellschaftlicher und politischer Bedeutung. Der vorliegende Antrag zur Einrichtung der Forschungsgruppe „Nachhaltige Rurbanität“ befasst sich mit diesem Phänomen und begreift es als einen sich ständig neu erfindenden Zustand des Seins und Werdens. Geleitet von drei übergeordneten Hypothesen nutzen die 10 natur- und sozialwissenschaftlichen Projekte Fallstudien in rurbanen Ballungsgebieten Indiens, Westafrikas und Marokkos, um Wirkmechanismen, Folgen und Steuerungsprozesse von Rurbanität beispielhaft zu untersuchen. Ein interdisziplinärer, sozial-ökologischer Forschungsansatz erlaubt die Schaffung von Synergien zwischen den Fachkulturen und verschiedenen Wissenschaftsdisziplinen, unter Einbeziehung von Perspektiven des Globalen Südens. Dieser gemeinsame Rahmen ist Voraussetzung dafür, kontextuelle empirische Forschung mit theoriegeleiteten analytischen Vergleichen zu verbinden, sowie innovative Methoden für die Systemanalyse und die Synthese der Ergebnisse zu nutzen. Dadurch lassen sich rural-urbane Transformation und das daraus abgeleitete Phänomen der Rurbanität in seiner skalen- und regionsübergreifenden Komplexität verstehen und dessen zentrale Implikationen für eine nachhaltige Landnutzungs- und Gesellschaftsentwicklung bewerten.
Die Verschmutzung durch Kunststoffe hat sich zu einer anerkannten Bedrohung für terrestrische Ökosysteme entwickelt. Sobald Kunststoffe in die Umwelt gelangen, kommt es zu einem Abbau, der die Eigenschaften des Plastikmülls verändert (z. B. Sorptionsfähigkeit, Sprödigkeit, Flexibilität), was Auswirkungen auf Pflanzen-Boden-Systeme haben kann. Die Photodegradation kann als einer der häufigsten Prozesse des Kunststoffabbaus weltweit angesehen werden. Dadurch wird Kunststoff spröde und zersplittert in kleine Stücke (Mikroplastik), erhöht seine Sorptionskapazität für Metalle und organische Verbindungen und kann potenziell das Sickerwasser oder gefährliche Chemikalien in den Boden erhöhen. Der Abbau von Mikroplastik kann nicht nur die Bodenfunktionalität und die Struktur von Lebensgemeinschaften verändern, sondern auch die Leistung von Pflanzen, so dass die jüngsten Forschungen, die scheinbar positive Auswirkungen von Mikroplastik auf die Pflanzenproduktivität und die Bodeneigenschaften beschreiben, möglicherweise nur einen Teil der Wahrheit erfassen, da sie nur die Auswirkungen von unberührtem Mikroplastik (bevor es abgebaut wurde) auf Pflanzen-Boden-Systeme berücksichtigen. Das Ziel dieses Projekts ist es zu verstehen, wie abgebautes Mikroplastik (das echte Mikroplastik, das tatsächlich in die Bodenmatrix gelangt) die Pflanzen-Boden-Funktionalität unter Verwendung von Mikrokosmen beeinflusst. Konkret möchte ich i) die Mechanismen entwirren, durch die sich der Abbau von Mikroplastik (Mikroplastik, Form, Polymertyp, Größe und Sickerwasser) auf Pflanzen-Boden-Systeme auswirkt, und ii) die Auswirkungen auf die Struktur der Pflanzengemeinschaften testen, die sie haben können. Um dies zu wissen, werde ich eine Reihe von Experimenten entwickeln, um dies zu untersuchen. Zunächst möchte ich den Abbau von Mikroplastik in Abhängigkeit von der Form des Mikroplastiks (Fasern, Folien, Schäume) und dem Polymertyp (z.B. Polyethylen, Polypropylen) untersuchen. Dann möchte ich die Mechanismen des Mikroplastikabbaus in Abhängigkeit von der Größe des Mikroplastiks und den chemischen Sickerstoffen entschlüsseln, und schließlich möchte ich verstehen, welche Auswirkungen die Form des Mikroplastiks, der Polymertyp, die Größe und die Sickerstoffe auf wichtige Lebensstadien der Pflanzenentwicklung haben. Das heißt, Samenkeimung, Pflanzenwachstum und Pflanzenfitness. Darüber hinaus möchte ich die potenziellen Auswirkungen verstehen, die all dies auf die Konkurrenzfähigkeit von Pflanzenarten haben kann.
Zu verstehen, wie anthropogene Faktoren Einfluss auf die Ernährungsökologie bedrohter Tierarten nimmt, stellt einen zentralen Ansatz dar, um Reaktionen auf Umweltveränderungen vorherzusagen und gefährdete Arten schützen zu können. Besonders für Bestäubungsinsekten wie Hummeln ist dieses Verständnis bedeutsam, da bei vielen dieser Arten große Rückgänge in ihren Beständen zu verzeichnen sind. Diese Entwicklung lässt sich womöglich zum Teil auf Mangel- und Fehlernährung zurückführen. Mithilfe dieser Forschungsarbeit möchten wir verstehen, wie die Ernährungsökologie von Bombus terrestris von Landnutzung und Infektionskrankheiten beeinflusst wird - Krankheiten sind ein zunehmendes Problem, da kommerzielle Imkerei die Verbreitung von Erregern begünstigt. Um dieses Verständnis zu erreichen, haben wir unsere Untersuchungen in drei Phasen eingeteilt. In der ersten Phase untersuchen wir die Interaktion von Aminosäuren und deren Einfluss auf B. terrestris’ Fitness und Nährstoffhaushalt. Dazu wenden wir eine hochmoderne Technik in der Ernährungsökologie an, das sogenannte ‘exome matching’. In diesem Verfahren lassen sich anhand von Sequenzdaten der individuelle Bedarf der Aminosäurezusammensetzung ableiten. Diese Erkenntnisse stellen eine Grundlage für unser Verständnis und die weitere Erforschung der Ernährungsökologie von Hummeln dar. Zudem wird in diesem Zuge das exome matching -Verfahren auf Hummeln optimiert. In Phase 2 werden wir uns der Frage widmen, in wie weit Aminosäuren mit den anderen beiden zentralen Nahrungskomponenten (Kohlenhydrate und Fette) interagieren und diese Interaktion Einfluss auf B. terrestris‘ Fitness und Immunität nimmt. Wir untersuchen die bevorzugte Nahrungszusammensetzung in gesunden Individuen und Hummeln, bei denen eine Immunantwort provoziert wurde. Dies wird uns durch die aussagekräftige Methode des ‚dietary mapping‘ ermöglicht, dem ‚Geometric Framework of Nutrition‘. Die Ergebnisse werden zeigen, wie sich die Aufnahme bestimmter Makronährstoffe auf die Fitness von Hummeln auswirkt und sich die Ansprüche an die Zusammensetzung der Nahrung durch eine Immunantwort verändern. In Phase 3 untersuchen wir, wie sich die unterschiedliche Zusammensetzung von Pollen in diversen landwirtschaftlichen Umgebungen auf das reale Nahrungssammelverhalten von Hummeln auswirkt. Dies gibt Aufschluss über den Einfluss von Landwirtschaft auf die Ernährung von Hummeln. Indem wir Daten aus dem Feld und Labor vereinen, können wir Schlüsse darüber ziehen, ob exome matching und Geometric Framework of Nutrition fundierte Vorhersagen über das Nahrungssammelverhalten von Hummeln in der Natur treffen können. Es soll gezeigt werden, wie Umweltveränderungen die Ernährungsökologie von Arten beeinflussen und so zu einer Beeinträchtigung von Ökosystemdienstleistungen wie der Bestäubung führen können. Das durch dieses Projekt generierte Wissen kann somit eingesetzt werden, um Bestäuberverluste zu reduzieren.
Auf Grund ihrer Bedeutung für die Anpassung der Wälder an Umweltänderungen und ihrer Widerstandsfähigkeit gegenüber Störungen ist die Naturverjüngung zu einem Schwerpunkt der ökologischen Waldforschung geworden. Trotz der jüngsten technologischen Entwicklungen bleibt dies eine große Herausforderung. Insbesondere sehr kleine Pflanzen mit einer Höhe von weniger als 1,30 m und entsprechend kleinen Durchmessern sind mit photogrammetrischen Methoden schwer zu identifizieren. Manuelle Inventurmethoden, wie z. B. die klassische Vollinventur sind aber arbeitsintensiv und zu teuer, um sie auf großen Flächen anzuwenden. Das Projekt möchte dazu beitragen, dieses Problem zu lösen, in dem es ein Simulationswerkzeug zur Rekonstruktion von Punktmustern vorstellt und seine Qualität systematisch untersucht. Es basiert auf einem Forschungsansatz der drei Arbeitsschritte umfasst (1) die Erfassung der räumlichen Daten aller Bäume einschließlich der Verjüngung auf einer kleinen Teilfläche (= Referenzfläche), (2) die Erfassung des Oberstandes im gesamten Bestand (=Untersuchungsfläche) und (3) die Rekonstruktion der Verjüngung im gesamten Untersuchungsgebiet, wobei davon ausgegangen wird, dass überall die gleichen Beziehungen zwischen den Bäumen des Oberstandes und der Verjüngung wie in der Referenzfläche bestehen. Dieser Ansatz erlaubt es, die heutigen logistischen Möglichkeiten zu kombinieren: (a) die manuelle Erfassung der Verjüngung auf kleiner Fläche ist machbar, und (b) die Inventur des Oberstandes mit modernen Fernerkundungs- oder photogrammetrischen Methoden ist relativ einfach und weniger arbeitsintensiv. Indem das Projekt einen vorhanden und in den Forstwissenschaften bekannten Datensatz nutzt (Trainingsgrundlage wird der Datensatz des saisonalen tropischen Regenwaldes der Insel Barro Colorado (BCI) in Panama sein), kann es sich auf Schritt (3) beschränken. Ziel ist es systematisch zu untersuchen, welchen Einfluss eine höhere Strukturvielfalt und das Größenverhältnis von Referenz- und Prädiktionsflächen (= die gesamte Untersuchungsfläche) auf die Ergebnisse der Punktmuster-Rekonstruktion von Verjüngungspflanzen (=Unterstand) hat und welche räumlichen Statistiken besonders geeignet sind, diesen Einfluss quantitativ oder qualitativ zu bewerten. Die numerischen Methoden werden in einem dokumentierten R-Skript (bzw. R-Package) als zuverlässiges und effizientes Werkzeug für die Waldökologie und die forstliche Praxis zur Verfügung gestellt.
Die CO2 - Aufnahme höherer Pflanzen erfolgt diffusiv über kleine Öffnungen der Blattoberfläche, die Stomata. Gleichzeitig geht auf demselben Weg Wasserdampf verloren, angetrieben vom atmosphärischen Sättigungsdefizit (VPD). Die Flüsse beider Gase werden durch die stomatäre Öffnungsweite bestimmt. Seit mehreren Jahrzehnten ist daher die wechselseitige Skalierung der Flüsse von Wasserdampf und CO2 ein zentraler Teil aller wichtigen Gaswechsel-Modelle - erkennbar am Faktor 1.6, dem Verhältnis der Diffusionskonstanten. Allerdings wird die Gültigkeit dieser Annahme in Frage gestellt, wenn sich Feinstaubablagerungen auf den Blättern befinden. Hygroskopische Feinstaubbestandtteile lösen sich in der feuchten Blattgrenzschicht auf, kriechen als dünne Filme in die substomatäre Höhle und verbinden sich dort mit apoplastischem Wasser. Durch diese „hydraulische Aktivierung der Stomata“ (HAS) transportieren die Stomata sowohl flüssiges als auch gasförmiges Wasser vom Blattinneren in die Atmosphäre. Wir konnten zeigen, dass bereits moderate Luftverschmutzung die stomatäre Transpiration bei Tag, die minimale Leitfähigkeit bei Nacht, sowie das Verhältnis zwischen Transpiration und Blattöffnungsweite signifikant beeinflusste. Diese Effekte werden durch den klimawandelbedingten Anstieg von VPD noch verstärkt: Wassernutzungseffizienz und Trockentoleranz nehmen ab und die Modellentwicklung auf Basis der gegenseitigen Skalierung von CO2 und H2O wird unzuverlässiger. In diesem Projekt soll in Labor, Gewächshaus und Freiland der HAS-Einfluss auf den pflanzlichen Gaswechsel und die Hydraulik quantifiziert werden, wobei iso- und anisohydrische Arten unterschiedlich auf Feinstaubablagerungen reagieren. Sowohl experimentelle Erhöhung als auch Verringerung der Feinstaubkonzentration werden als Versuchsansätze genutzt, gemeinsam mit aktuellen Gaswechsel-, optischen und Isotopen-Techniken. Die Ergebnisse sind bedeutsam für das Verständnis der Atmosphäre/Pflanze-Interaktion auf allen Skalen von der Schließzelle bis zum Pflanzenbestand.
Die Aufforstung und Restauration von Waldlandschaften haben viel Aufmerksamkeit als wichtige Möglichkeit zur Eindämmung des Klimawandels (KW) erhalten. Daher spielen sie in vielen politischen Initiativen (Grüne Deal der EU; Bonn Challenge) eine wichtige Rolle. Doch die anhaltende Zunahme des durch den KW hervorgerufenen Stresses bedroht die Wälder. Angesichts des KW sind Anpassung und Klimaschutz durch Wälder eng miteinander verknüpft, denn ihre Fähigkeit, Kohlenstoff (C) langfristig zu binden, hängt von der Fähigkeit ab, vielfältigen Belastungen standzuhalten. Es gibt zunehmende Evidenz dafür, dass gemischte Plantagen aus mehreren Baumarten, C effizienter speichern und resilienter sind gegenüber KW-bedingtem Stress. Gemischte Plantagen stellen somit eine wichtige Möglichkeit dar, um auf natürliche Weise Klimaschutz und -anpassung zu betreiben. Weltweit werden jedoch die Baumplantagen von Monokulturen dominiert. Die Gründe für diese Ablehnung von Mischplantagen durch Waldbesitzer und Stakeholder müssen daher ermittelt und in künftigen Forstpolitiken angegangen werden, um eine weite Verbreitung von KW-resistenteren Mischwaldplantagen zu fördern. Ein möglicher Hinderungsfaktor sind unzureichende Kenntnisse der Praktiker und politischen Entscheidungsträger. Mittels eines globalen Netzwerks von Experimenten zur Artenvielfalt in Wäldern (TreeDivNet) werden wir ein mechanistisches Verständnis darüber entwickeln, wie Baumartenvielfalt, Baumarteneigenschaften und Bewirtschaftung (Durchforstung und Düngung) sowohl das Potenzial von gemischten Plantagen zum Klimaschutz (C-Sequestrierung) als auch zur Anpassung (Dürre- und Schädlingsresistenz) in einem Win-Win-Ansatz beeinflussen können. Darüber hinaus wird dieses Wissen in Richtlinien für Praktiker und Entscheidungsträger übersetzt.TreeDivNet umfasst weltweit 26 Experimente mit ca. 1,2 Millionen gepflanzten Bäumen. Diese Experimente basieren auf einem gemeinsamen, statistisch fundierten Design, das es erlaubt, kausale Zusammenhänge zwischen Baumdiversität, Management und Ökosystemfunktionen (inkl. C-Sequestrierung) zu analysieren. Der funktionelle und mechanistische Schwerpunkt von MixForChange und die unterschiedlichen Umweltkontexte der Experimente werden es ermöglichen, unsere Ergebnisse über Fallstudien hinaus zu extrapolieren und evidenzbasierte Richtlinien für die Bewirtschaftung von Mischplantagen zu entwickeln. Darüber hinaus wird MixForChange im Rahmen eines gemeinsamen analytischen Ansatzes Synergien und Zielkonflikte zwischen Klimaschutz- und Anpassungspotenzial von Mischplantagen einerseits und Erfüllung der Ziele der beteiligten Stakeholder andererseits analysieren. Der Einfluss von MixForChange auf die Gesellschaft wird durch einen starken Fokus auf Wissenstransfer und Kapazitätsaufbau auf allen Ebenen von Management und Governance gewährleistet. MixForChange wird einen wichtigen Beitrag zur Förderung von Mischwaldplantagen als natürliche Lösungen zur Bekämpfung des Klimawandels leisten.
Ein erheblicher Teil des Kohlenstoffs im Tundra-Taiga-Ökoton (engl. ‚Tundra Taiga Ecotone‘, TTE) wird als oberirdische Biomasse (engl. ‚Above-Ground Biomass‘, AGB) in Bäumen und Sträuchern durch Photosynthese gespeichert, wobei Kohlenstoffdioxid aus der Atmosphäre während der kurzen Wachstumsperiode in hohen Breiten entzogen wird. Dies führt zu geringer Kohlenstoffspeicherung im TTE. Der Klimawandel könnte die Produktivität beeinflussen und Vegetationsmuster verändern. Die Rolle abiotischer Faktoren in der Kohlenstoffspeicherung borealer Wälder ist ungenügend verstanden. Eine Neubewertung der Vegetationsorganisation muss hinsichtlich statischer Modulatoren erfolgen. Topografie, ein wichtiger Faktor für Wasser- und Nährstoffverfügbarkeit, ist ein statischer abiotischer Faktor, der die lokalen Wachstumsbedingungen beeinflusst. Mit steigenden Temperaturen wird erwartet, dass Niederschlag intensiver und häufiger wird, was zu Wasserstau oder Nährstoffauswaschung an bestimmten topografischen Positionen führen kann und den Rückgang bestimmter Baumarten zur Folge haben könnte. Daher könnte der Klimawandel lokale Reaktionen auf die topografische Position verändern und Wechselwirkungen mit Wetterbedingungen beeinflussen. Die Topografie könnte die Auswirkungen des Klimawandels mildern und anpassungsfähigen Arten zugutekommen, während andere unter veränderten Bedingungen leiden. Das Verständnis der Beziehung zwischen Topografie und Biomasseakkumulation ist entscheidend für die Bewertung der zukünftigen Rolle borealer Wälder im globalen Kohlenstoffhaushalt. Das BToBE-Projekt zielt darauf ab, Wissenslücken hinsichtlich des Einflusses der Topografie auf die Biomasseakkumulation im TTE zu schließen und deren Auswirkungen durch Vorwärtssimulation mit einem prozessbasierten Vegetationsmodell zu bewerten. Die zentrale Hypothese ist, dass sich die Reaktionen der Vegetation auf topografische Bedingungen im TTE aufgrund starker globaler Erwärmung verändert haben. Kürzlich wurden drohnenbasiert 3D-Punktwolken gesammelt, die verarbeitet werden, um Waldbiomasse zu ermitteln. Diese hochauflösenden Referenzdaten erfassen den bioklimatischen Gradienten des TTE, wobei die nördliche Baumgrenze in Niederungen mit Permafrost und im gebirgigen Terrain verläuft. Die drohnenbasierten AGB-Daten werden verwendet, um ein AGB-Modell für das großflächige Ableiten (engl. ‚upscaling‘) mit Landsat- und Sentinel-2-Multispektralsensoren zu entwickeln. Das Ziel ist dreistufig: Erstens sollen die Beziehungen zwischen AGB und Topografie mithilfe von verallgemeinerten additiven Modellen aufgeklärt werden; zweitens soll die Stabilität dieser Abhängigkeiten durch Rekonstruktion langfristiger AGB-Daten aus den vergangenen Jahrzehnten untersucht werden. Dies wird für die Verbesserung und Implementierung des Individuen-basierten und räumlich expliziten borealen Waldvegetationsmodells LAVESI genutzt, zur Ableitung von AGB-Trajektorien im TTE in den kommenden Jahrzehnten.
| Origin | Count |
|---|---|
| Bund | 149 |
| Type | Count |
|---|---|
| Förderprogramm | 149 |
| License | Count |
|---|---|
| offen | 149 |
| Language | Count |
|---|---|
| Deutsch | 147 |
| Englisch | 142 |
| Resource type | Count |
|---|---|
| Keine | 1 |
| Webseite | 148 |
| Topic | Count |
|---|---|
| Boden | 103 |
| Lebewesen und Lebensräume | 139 |
| Luft | 68 |
| Mensch und Umwelt | 146 |
| Wasser | 55 |
| Weitere | 149 |