Allochthones organisches Material, wie Falllaub, ist eine zentrale Nährstoff- und Energiequelle für aquatische Ökosysteme. Diese werden durch die Aktivität von Mikroorganismen, im Speziellen aquatische Pilze, für das aquatische Nahrungsnetz zugänglich. Die Pilze tragen zum Einen durch die Produktion von Enzymen direkt zum Falllaubabbau bei. Zum anderen erhöhen sie die Konzentration an Lipiden und Proteinen auf dem Laub und stimulieren somit den Fraß von Zerkleinerern, wodurch sie indirekt zum Laubabbau beitragen. Die Zusammensetzung der Pilzgemeinschaft wird jedoch durch Stressoren anthropogenen Ursprungs beeinflusst, wodurch auch die Fähigkeit der Gemeinschaft beeinträchtigt wird, diese beiden Funktionen wahrzunehmen. In Anlehnung an das Konzept der Verschmutzungsinduzierten Toleranz einer Gemeinschaft, werden aufgrund von Stressoren sensitive durch tolerante Spezies ersetzt, wodurch sich die Toleranz der Gemeinschaft erhöht. Diese erhöhte Toleranz kann stressor-spezifisch sein. In diesem Zusammenhang untersucht das vorliegende Projekt die Toleranz von unbeeinflussten Gemeinschaften relativ zu Gemeinschaften, welche entweder an Mischungen von organischen Mikroverunreinigungen und Nährstoffen (Abwassereinleitung) oder an Fungizide (Weinbau) angepasst sind. Die Effizienz dieser Gemeinschaften Falllaub abzubauen, wird unter zunehmenden Konzentrationen von Nährstoffen und Fungiziden in einem voll-faktoriellen laborbasiertem Testverfahren untersucht. Durch die gleichzeitige Betrachtung der Eigenschaften einzelner Pilzarten (z.B. Enzymaktivität, Amino- und Fettsäurenzusammensetzung) strebt BIO2FUN an die zugrundeliegenden Mechanismen aufzudecken. Darüber hinaus können erste Abschätzungen zu möglichen 'bottom-up' gerichteten Auswirkungen auf die nächst höhere trophische Ebene, den Zerkleinerern, abgeschätzt werden. Diese werden durch Fütterungsexperimente, welche physiologische Reaktionen der Zerkleinerer untersuchen, verifiziert. Damit kann das vorliegende Projekt als Meilenstein für der Interpretation von zukünftigen Studien betrachtet werden, die sich der Rolle aquatischer Pilze in heterotrophen Nahrungsnetzen widmen.
In der aquatischen Umwelt zeigen Pilze starke Interaktionen zu einer Vielzahl anderer Organismen, darunter Algen, Metazoen und Bakterien, die die pilzliche Diversifizierung vorangetrieben haben. Die Pilzevolution begann frühzeitlich in der aquatischen Umwelt. Die Verbindungen mit anderen Organismen führten zu vielen biotrophen Lebensweisen und einer großen phylogenetischen Vielfalt. Es ist wahrscheinlich, dass die frühen Wasserpilze bereits die funktionellen Merkmale ausbildeten, die zum Erfolg des Pilzreichs, als eine der vielfältigsten Organismengruppen der Erde, geführt hat. Trotz der recht umfangreichen Studien, die die Komplexität der aquatischen Mikrobiome untersuchen, sind weder die große phylogenetische Vielfalt der aquatischen Pilze noch die Wechselwirkungen der aquatischen Pilze mit anderen Organismen gut beschrieben. Dieses Paradoxon ist das Resultat von zu wenigen Studien, die aquatische Mikrobiome ganzheitlich untersuchen, und ist zudem auch der Tatsache geschuldet, dass die aquatischen Pilze nicht als solche erkannt werden. Wasserpilze erscheinen oft als unbekannte genetische Elemente ohne erkennbare Übereinstimmung mit unseren Datenbanken. Das veranlasste uns dazu, den Begriff Dunkle Materiepilze (DMP) zu etablieren, um die Unbekanntheit der frühen divergierenden Pilzlinien in der aquatischen Umwelt hervorzuheben. Einer der vielversprechendsten aquatischen Lebensräume zur Untersuchung von DMP und deren Wechselwirkungen mit anderen Organismen im kleinen Maßstab ist der aquatische Biofilm. Insbesondere heterotrophe Biofilme können einen hohen Anteil an DMP aufweisen, was die Aufklärung von DMP-Interaktionen und ökologischen Funktionen erleichtert. Es ist völlig unklar, welche organismischen Wechselwirkungen die Determinanten für die DMP in Biofilmen sind und inwieweit DMP die Biofilmstruktur beeinflussen. Das Verständnis der Ökologie und der Evolution von DMP bleibt aufgrund der Komplexität der natürlichen Gemeinschaften eine Herausforderung. Aufgrund der neuen methodischen Entwicklungen ist es nun jedoch möglich, durch Manipulationsexperimente an natürlichen sowie an Modell-Biofilmgemeinschaften eine konzeptionelle Sicht auf die DMP-Ökologie und -Evolution aufzubauen. Das Ziel der vorgeschlagenen Emmy Noether-Forschungsgruppe ist es, die grundlegende Ökologie und Evolution der aquatischen DMP zu verstehen. Durch die Kombination von Mikrodissektion, Hochdurchsatz-Kultivierung und molekularer Sequenzierung der nächsten Generation, werden wir herausfinden, wie und welche Pilz-Interaktionen mit Mikroben die gesamte Struktur und Funktion der mikrobiellen Gemeinschaft beeinflussen. Wir werden auch umfangreiche DMP-Barcode- und Genomdaten generieren, die als Schlüsselressourcen für das Erstellen einer robusten frühen Pilzphylogenie dienen werden, und es uns ermöglicht, die frühe Pilzevolution auf der Grundlage von Phylogenomik und biotrophen Interaktionen zu diskutieren.
Mit Experimenten auf verschiedenen Skalen und verschiedener Komplexität wird die Reaktion von Gemeinschaften aquatischer Pilze sowie von Laubabbau auf multiple Stressoren untersucht. Experimente in Mikrokosmen analysieren die Reaktionen vorgestresster Pilzgemeinschaften auf Temperatur, Salz- und Trockenstress über längere Zeiträume, einschließlich möglicher Erholungsprozesse. Darüber hinaus wird die Nahrungswahl vorgestresster Gammariden zwischen verschiedenen Pilzgemeinschaften untersucht. In dem ExStream Experiment, den Freilandrinnen und den Feldstudien von RESIST werden die Auswirkungen multipler Stressoren auf das Nahrungsnetz mit Schwerpunkt auf den Laubabbau untersucht.
Aquatische Pilze (AF) steuern wichtige Ökosystemprozesse, die unterstützende, fördernde und regulierende Dienste leisten. Sie sind für den Nährstoffkreislauf, den Abbau von Schadstoffen und die Kontrolle von Algenblüten verantwortlich. Jedoch werden sie nicht in routinemäßige Programme zur Überwachung der biologischen Vielfalt einbezogen. MoSTFun ist eine paneuropäische Initiative, die die Fachkenntnisse von acht europäischen Partnern, der IUCN Species Survival Commission und GEOBON-Spezialisten zusammenbringt, um die Überwachung von AF und ihren Leistungen in den meisten europäischen aquatischen Ökosystemen, von Süßwasser über Brackwasser bis hin zu Küstengewässern zu entwickeln. MoSTFun zielt darauf ab, die vorhandenen Ressourcen mit einem kosteneffizienten Ansatz zu nutzen: Gefrierschränke, Archive und Datenlager sind ungenutzte Quellen für Proben und Daten (THEMA3). Durch seine Partnerschaften und Kooperationen hat MoSTFun einen beispiellosen Zugang zu Daten und Proben aus Programmen zur biologischen Vielfalt und langfristigen Forschungsinitiativen. Dies wird MoSTFun in die Lage versetzen, Wissenslücken zur AF-Diversität in ganz Europa zu schließen (THEMA2). Erstens werden wir modernste -Omik-Technologien und Probenahmestrategien optimieren und anwenden (WP4), um standardisierte Daten zur AF-Diversität und aus bestehenden DNA-Archiven und Fallstudien in wenig untersuchten Gebieten wie Gletschern, Küstengebiete und Ästuaren zu erstellen (WP1,2). Wir werden auch öffentliche Biodiversitäts- und Gendatenbanken durchforsten, um das Potenzial der bereits verfügbaren Ressourcen zu verstehen und die AF-Diversität aus verschiedenen Datenquellen zu entschlüsseln (WP1). Durch die Kombination und Integration neu generierter und ausgewerteter Daten mit Daten aus verfügbaren Datenspeichern (einschließlich Umweltvariablen), Erdbeobachtungs- (EO, Satellit) und GIS-Daten sowie mit dem von Interessenvertretern gewonnenen Wissen werden wir Pipelines für die Datenintegration entwickeln, die für die Modellierung von Mustern der biologischen Vielfalt in Raum und Zeit erforderlich sind, und schließlich einen neuen Satz wichtiger Biodiversitätsvariablen definieren (WP3). Dies wird die Nützlichkeit und das Potenzial für ein globales Verständnis der biologischen Vielfalt und der wichtigsten von AF erbrachten Leistungen aufzeigen. Optimierte Methoden werden weiter getestet (WP4), um sie bei der Überwachung eines neuen globalen Gesundheitsproblems einzusetzen, i.e. der Ausbreitung von Resistenzgenen gegen Fungizide in der Umwelt (WP4). Unter Einbeziehung der Interessengruppen (alle WPs), unterstützt durch ein Knowledge-to-Action Hub (WP5), werden wir die effektivsten Strategien und Werkzeuge für die Überwachung der biologischen Vielfalt in Gewässern in ganz Europa bewerten und entwickeln (THEMA1). MoSTFun gehören interdisziplinäre Experten an, die den Austausch von komplementären Fähigkeiten und Fachwissen, die Ausbildung und Mobilität von Nachwuchsforschern fördern.
Pilzparasiten auf Phytoplankton sind ubiquitär und stellen eine integrale Komponente aquatischer Ökosysteme dar. Trotz zunehmender Hinweise, dass diese parasitischen Pilze eine wichtige Rolle für verschiedenste Ökosystemfunktionen spielen - via top-down Kontrolle von Phytoplanktonblüten und alternativen Kohlenstoff- und Nährstoffflüssen - sind sie noch immer stark vernachlässigt und wenig erforscht. Insbesondere methodische Gründe sind dafür verantwortlich, so sind sie morphologisch schwierig zu identifizieren und werden daher häufig übersehen. Neuerdings zeigen Untersuchungen von Umwelt-DNA eine unerwartet hohe Diversität von meist noch nicht beschriebenen Pilzen in aquatischen Ökosystemen. Ein bedeutender Teil dieser noch unbekannten Sequenzen gehört zu den parasitischen Pilzen auf Phytoplankton. Bis heute bleiben diese jedoch noch weitgehend unsichtbar für mikrobielle Ökologen, da sie bisher nur einen kleinen Anteil der beschriebenen Arten von parasitischen Pilzen auf Phytoplankton in den Sequenzdatenbanken ausmachen. Daher, ist die Hauptaufgabe dieses Projektes, diese Lücke zwischen morphologischen und molekularen Studien mit klassischen Kultivierungsverfahren und kultivierungsunabhängigen modernen Ansätzen zu überbrücken. Dies erlaubt der Umweltgenomik, einen direkten Zugang zu taxonomischem Wissen, das während mehr als einem Jahrhundert generiert wurde. Ferner wird die Verbindung von Diversitäts- und Funktionsanalyse aquatischer Pilze ermöglicht. Die phylogenetische Integration dieser bisher stark vernachlässigten Gruppe parasitischer Pilze auf Phytoplankton wird einen wichtigen Beitrag darstellen, um die evolutionären Schlüsselereignisse der basalen Pilze an der Wurzel des Pilzstammbaumes zu verstehen. Die zweite Aufgabe soll sein, unser Wissen zu den ökophysiologischen Eigenschaften der Phytoplankton-Pilz-Interaktionen zu entschlüsseln. Zusätzlich erlaubt das einzigartige Set von Modellsystemen, physiologische Experimente durchzuführen, die die Bedeutung von Temperatur und Licht auf die Interaktion von wohl-definierten Phytoplankton-Pilzkulturen beleuchten und die taxonomische sowie ökologische Variabilität (Spezialist vs. Generalist) untersuchen. Diese Studien werden wichtige, bisher noch fehlende Grunddaten bzgl. Taxon-spezifischen und Trait-abhängigen physiologischen Antworten von Phytoplankton-Pilz Interaktionen liefern. Solche Daten sind sehr wichtig, um jetzige und zukünftige Vorhersagen von Pilzinfektionen und ihren Auswirkungen auf die Phytoplanktondynamik sowie auf die des gesamten Nahrungsnetzes im Zusammenhang mit den momentanen globalen Veränderungen zu verbessern.
Aquatische Pilze (AF) sorgen für Gesundheit, Funktion und Widerstandsfähigkeit von aquatischen Ökosystemen; doch ist ihre biologische Vielfalt weitgehend unbekannt. AF sind von allen wichtigen Erhaltungsplänen und -strategien unbeachtet und die derzeitigen Schutzgebiete (PAs), z. B. Natura-2000-Netz und Ramsar-Konvention beinhalten keine strategischen Überlegungen zur AF-Vielfalt und -Funktionalität. Dank enormer Fortschritte in der Sequenzierung und des kombinierten transdisziplinären Fachwissens der FUNACTION-Partner werden wir zum ersten Mal Wissen zur taxonomischen, phylogenetischen und funktionellen Vielfalt von AF aufbauen, um AF-fokussierte Strategien für ihre Erhaltung zu entwickeln. FUNACTION wird i) eine paneuropäische Karte der Pilzbiodiversität erstellen, um Muster und Triebkräfte der AF-Vielfalt auf europäischer Ebene zu identifizieren, die für eine datengestützte Erhaltung benötigt werden (WP1; THEME1); ii) die AF-Vielfalt über die verschiedenen räumlich-zeitlichen Skalen in PA vs. Nicht-PA auf ihre Eignung testen und bewerten (taxonomisch, phylogenetisch und funktionell), z.B. die Wirksamkeit beim Schutz der AF-Vielfalt, -Funktionen und -Dienstleistungen (WP2; THEME1,2,3); iii) Aufbau von Wissen und Strategien zur Überwachung (z. B. im Rahmen der Wasserrahmenrichtlinie 2000/60/EG) und Erhaltung von AF (Planung neuer PA im Rahmen der EU Biodiversitätsstrategie für 2030) und der damit verbundenen Ökosystemfunktionen (WP3,4; THEMA1,3) sowie Leitlinien zu deren Ausweitung auf globaler Ebene und iv) Sicherstellung einer effektiven Einbindung, Kommunikation und Informationsweitergabe an die Öffentlichkeit, Interessengruppen (nationale, europäische und globale Manager und politische Entscheidungsträger) und die wissenschaftliche Gemeinschaft (WP5). Die Identifizierung paneuropäischer Muster der AF-Diversität (WP1) in 16 Ländern wird ergänzt durch Datensätze von ca. 500 Standorten aus 26 europäischen Ländern (estnische FunAqua-Projektpartnern). Um eine breite geografische Streuung innerhalb Europas und repräsentative bioklimatische und Umweltgradienten zu gewährleisten, werden Fallstudien in allen Partnerländern (Estland, Deutschland, Italien, Portugal, Schweden und der Schweiz) (WP2) durchgeführt. Unsere Metabarcoding- und Metagenomanalysen erlauben einzigartige Einblicke in die Pilz- und Eukaryontenvielfalt und -funktion, die zusammen mit Klima, Landnutzung und anderen wichtigen Umweltvariablen in harmonisierte Leitlinien und Beispiele für eine wirksame Bewirtschaftungs- und Erhaltungsplanung in Europa eingesetzt werden. Um diese Ziele zu erreichen, fördert FUNACTION (Konsortium transnationaler, interdisziplinärer Experten (incl. IUCN)) den Austausch von Wissen, die Mobilität und Ausbildung der nächsten Generation von Wissenschaftlern und Managern und somit die europäische Kompetenz in diesem Bereich. FUNACTION baut ein effektives, langfristiges Kooperationsnetz zur Bewertung und zum Erhalt der AF-Diversität in Europa auf.
Fungi are key players in the decomposition of leaves in freshwaters. This functional role is maintained by a specifically adapted fungal community. To assess the quantitative contribution of single fungal species to the process, it is essential to determine their abundance. Quantitative real-time PCR (qPCR) is the prevalent method for this purpose, because it detects individual species of aquatic fungi in samples composed of multiple species. Quantitative PCR reactions are an extension of the traditional PCR method, which facilitates measuring the exponential amplification of a specific gene region via the emission of fluorescence signals in real time. This chapter describes how to design and validate a qPCR assay for fungal litter decomposers. The method uses a taxon-specific Taqman® probe labelled with a fluorescent reporter which hybridizes between two PCR primers. Due to the 5'-3'-exonuclease activity of DNA polymerase during PCR, the reporter dye is released and the emitted fluorescence is measured at 465-510 nm. Monitoring fungal taxa by qPCR assays opens excellent opportunities to gain new insights in microbial community ecology and ecosystem processes such as litter decomposition that are driven by fungi. © Springer Nature Switzerland AG 2020
Das Hauptziel dieses Forschungsprojektes ist es, zukünftige Veränderungen im aquatischen Kohlenstoffkreislaufdurch mikrobielle Mechanismen zu charakterisieren, wobei der Priming-Effekt im Vordergrund steht, da er wenig in aquatischen Systemen untersucht ist. In Abhängigkeit der Umweltbedingungen kann Priming den mikrobiellen C-Kreislauf stimulieren oder inhibieren. Daher wollen wir zukünftige Veränderungen in der Rolle von Priming mittels Komponenten-spezifischer Isotopenanalyse (13C/12C von mikrobiellen Phospholipid-Fettsäuren (PFLA)) im Labor und Feld untersuchen. Dafür wollen wir geeignete Protokolle entwickeln, die PFLA Analyse mit molekularen Methoden, z.B. stabile isotope probing -vor allem von Bakterien und Pilzen- miteinander verbinden. Das Ziel ist es, den Einfluss von terrestrischen OC Einträgen auf Priming Effekte zu untersuchen und daher Veränderungen der aquatisch-terrestrischen Kopplung sowie die Rolle globaler Veränderungen für den aquatischen Kohlenstoffkreislauf zu beleuchten. Nach unserem Wissen wird dies die erste Studie sein, die den metabolischen Transfer von labilen und refraktären 13C-markierten OC Pools in einem Ansatz untersucht und es damit ermöglicht, die zugrunde liegenden mikrobiellen Mechanismen des Primings in aquatischen Systemen zu untersuchen. Beide C Pools werden mit unterschiedlicher Pulsierung und Nährstoffkonzentrationen zugegeben, um Effekte der Verfügbarkeit von labilem OM auf Abbauprozesse des refraktären OM zu untersuchen. In der ersten Phase wollen wir Laborexperimente mit definierten Mikroorganismen, deren Fähigkeiten bestimmte Substrate abzubauen bekannt sind, durchführen. Dies erlaubt gezielte Studien zu grundlegenden Mechanismen und Interaktionen von Organismen sowie deren Bedeutung für den OM Abbau. Ein besonderes Augenmerk soll auf die Rolle von aquatischen Pilzen für den Mineralisationsprozess gelegt werden. Zuerst wollen wir die grundlegenden Prozesse des Primings und Synergien zwischen Bakterien und Pilzen untersuchen, um zu quantifizieren, welche OM Pools (labil vs. refraktär) respiriert oder in die mikrobielle Biomasse eingebaut werden. In der zweiten Phase soll die Rolle der charakterisierten Prozesse sowie Interaktionen für den OM-Umsatz für natürliche, komplexe Mikrobengemeinschaften bei unterschiedlichen C-Zugabe Regimes (Simulierung des zukünftigen Anstiegs des C-Eintrages) und unterschiedlicher Nährstoffkonzentrationen (elemental stoichiometry) untersucht werden. In einer dritten Phase sollen diese Studien auf das Freiland mit einer sehr viel höheren Komplexität übertragen werden. Dafür sollen Mesokosmosversuche (http://seelabor.de) durchgeführt werden, wobei vor allem Partikelfluss und Gasflüsse als Ökosystemfunktionen im Vordergrund stehen sollen. Unser modularer Ansatz erlaubt es uns, die Rolle des Priming im C-Kreislauf in der Wassersäule und an aquatisch-terrestrischen Grenzzonen zu quantifizieren und damit die Abschätzung der C-Budgets aquatischer Systeme zu verbessern.
Fungi play a critical role in the functioning of aquatic ecosystems, particularly in the biogeochemical processing of organic carbon. Because of current changes to the global carbon budget, the understanding of functional diversity of aquatic fungi is of paramount importance. They remain largely unknown and their study requires novel methods and interdisciplinary concepts. We propose a multi-disciplinary approach that combines the development of new genetic techniques with experiments in laboratory cultures and natural ecosystems. Based on their expertise and the available infrastructure, the participants persue the long-term goal of establishing a Leibniz Initiative for Aquatic Mycology.
Mit dem vorgelegten BfN-Skript wird für den deutschen Raum die erste umfangreiche konsequent kriterienbasierte Bewertung der naturschutzfachlichen Invasivität von gebietsfremden aquatischen Arten für die Gruppen der Pilze, Niederen Pflanzen und Wirbellosen Tiere vorgelegt.
Origin | Count |
---|---|
Bund | 14 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 10 |
Text | 1 |
Umweltprüfung | 1 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 6 |
offen | 10 |
Language | Count |
---|---|
Deutsch | 14 |
Englisch | 9 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 6 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 9 |
Lebewesen und Lebensräume | 16 |
Luft | 4 |
Mensch und Umwelt | 16 |
Wasser | 11 |
Weitere | 15 |