API src

Found 232 results.

Einfluß von Laccase-Produktion durch Pilze und Mykorrhizen auf die Bildung und Stabilität organischer Substanz in land- und forstwirtschaftlichen Böden

Im Projekt soll der Einfluß oxydativer Exoenzyme von Pilzen und Mykorrhizen auf den Auf- und Abbau der organischen Bodensubstanz charakterisiert werden. Über die gesamte Dauer des SPP sind zwei Arbeitsetappen geplant. Zuerst werden Primer zum molekularbiologischen Nachweis von Boden- und Mykorrhizapilzen mit Laccase-Genen und zur Analyse der Expression dieser Gene in Böden entwickelt. Um die bodenökologische Aussagekraft der Methode zu gewährleisten, werden Protokolle zur Extraktion von DNA und mRNA aus Böden mit Proben von den SPP-Standorten optimiert und geeicht. In einem zweiten Arbeitsschritt werden die Methoden an den landwirtschaftlichen und forstwirtschaftlichen Böden der SPP-Standorte eingesetzt. Die Ergebnisse von Untersuchungen der Struktur und Funktionen der Pilzpopulationen werden im Zusammenhang mit Analysen anderer SPP-Teilnehmer interpretiert. Dabei sollen insbesondere Daten über Gehalt und Kreislauf der festen und gelösten organischen Bodensubstanz, über Fraktionierung natürlicher Isotope in den Phasen des Kreislaufs sowie über Aufbau- und Abbauvorgänge durch nicht pilzliche Bodenmikroorganismen und durch Bodentiere berücksichtigt werden. Die Beteiligung an Experimenten zum Abbau radioaktiv markierter Streu ist ebenfalls vorgesehen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Kopplung von Totholzabbau und Stickstoffkreislauf: Diversität und Funktion von Diazotrophen (Woodstock)

Totholzstämme repräsentieren eine kohlenstoff- (C) und energiereiche aber zugleich stickstoff-(N)arme Ressource in Waldökosystemen. Biologische N2-Fixierung durch freilebende diazotrophe Mikroorganismen trägt zur N-Anreicherung im Totholz bei. Über die Funktion der Diazotrophen für die N-Versorgung von totholzbewohnenden Organismen und für den Totholzabbau ist bislang wenig bekannt. In den Biodiversität-Exploratorien existieren unterschiedliche Bedingungen für diazotrophe Mikroorganismen durch Totholzstämme von 13 Baumarten, die im BeLongDead-Experiment auf 30 Flächen exponiert sind. Ein Ziel des Projektantrags ist den Beitrag der N2-Fixierung zur N-Anreicherung zu quantifizieren und die aktiven diazotrophen Gemeinschaften in den Totholzstämmen des BELongDead-Experiments zu identifizieren. Ein weiteres Ziel ist die experimentelle Überprüfung von Einflussfaktoren auf die N2-Fixierung, Quantität und Diversität der aktiven diazotrophen Gemeinschaft und auf den Transfer von fixierten N zu holzabbauenden Mikroorganismen. Unsere Hypothesen sind, (1) N2-Fixierungsrate und Diversität von Diazotrophen im Totholz unterscheiden sich zwischen den 13 Baumarten, der Intensität des Forstmanagements und den Exploratorien, (2) diazotrophe Gemeinschaften und N2-Fixierung unterscheiden sich entlang des radialen Gradienten in den Totholzstämmen von außen nach innen, (3) Diversität und Aktivität von Diazotrophen und holzabbauenden Pilzen sind stark assoziiert aufgrund ihrer gegenseitigen Abhängigkeit von C und N Ressourcen. Die letztere Beziehung moduliert die Aktivität und Zusammensetzung von diese Gemeinschaften im initialen und forstgeschrittenen Abbaustadium. Ferner testen wir die Hypothese, dass (4) externe N-Quellen die N2-Fixierung und die Quantität von Diazotrophen reduzieren. Zur Überprüfung der Hypothesen werden wir innovative und etablierte Methoden sowie Felduntersuchungen und Laborexperimente kombinieren. N2-Fixierungsraten werden mit dem 15N2 Ansatz und die funktionellen nifH-Gene mit spezifischer quantitativer PCR und Amplicon-Sequenzierung bestimmen. Struktur und Aktivität der diazotrophen Gemeinschaft werden mit einer Bromodeoxyuridintrennung sowie dem Stabilen Isotopen Beprobungsansatz (SIP) von 15N-markierter RNA analysiert, und beide Ansätze mithilfe der Amplicon-Sequenzierung kombiniert. Schließlich wird der Einfluss verschiedener Einflussfaktoren Parameter auf die Struktur und Aktivität der diazotrophen Gemeinschaft untersucht. Unsere Expertisen ermöglichen es die Wechselwirkungen zwischen N2-Fixierung, Abundanz und Diversität der Diazotrophen und kontrollierenden Faktoren für den Totholzabbau neu zu bewerten. Durch die Zusammenarbeit in einem koordinierten und vollständig replizierten Experiment mit 30 Waldökosystemen erwarten wir belastbare Ergebnisse mit großer wissenschaftlicher Bedeutung und Nutzen für die Totholzforschung.

Funktionelle Analyse von non-Resistenzfaktoren der pandemischen Extended-Spektrum Beta-Laktamase bildenden Escherichia coli-Sequenztypen ST131 und ST648

Im letzten Jahrzehnt nahm die Prävalenz Extended-Spektrum Beta-Laktamase (ESBL) (1)- bildender Escherichia coli in Human- und neuerdings auch Tiermedizin dramatisch zu. Phylogenetische Analysen mittels Multilokus-Sequenztypisierung belegen eine Assoziation dieser multiresistenten Bakterien mit bestimmten Sequenztypen (STs). Innerhalb dieser ESBL-STs existieren pandemische klonale Linien, die in unterschiedlichsten Habitaten auftreten. Sie werden in klinischen aber auch in Wildtier- und Umwelt-proben nachgewiesen, somit unabhängig von einem konstanten Antibiotika-Selektionsdruck. Die ESBL-Linien ST131 und ST648 zeigen eine für E. coli ungewöhnliche Kombination von Resistenz und Virulenz. Dies kann der entscheidende Faktor für die pandemische Ausbreitung dieser Sequenztypen sein. Im vorliegenden Antrag sollen die zugrundeliegenden Mechanismen dieses Phänomens anhand folgender Hypothesen aufgeklärt werden: Stämme der Linien ST131 und ST648 besitzen (i) eine erhöhte-Plasmidaufnahme-Aktivität; (ii) ein phylogenetisch determiniertes Kerngenom, dessen Interaktion mit dem Plasmidgenom in erhöhter Virulenz oder Virulenz-unabhängiger Adaptation an bestimmte Habitate resultiert; (iii) im Kern- bzw. akzessorischen Genom unabhängig vom aufgenommenen Plasmid definierte Metabolismus-/Virulenzfunktionen, die eine erweiterte Habitatfunktion bedingen. Die Veri- bzw. Falsifizierung der Hypothesen erfolgt zunächst auf Basis von in silico-Analysen der DNA-Sequenzen von Plasmiden und Genomen dieser pandemischen ESBL-STs. Mit Hilfe eines in vivo Screenings im natürlichen Habitat Vogeldarm werden Wildtypstämme der ESBL-STs ausgewählt bei denen anschließend Kandidatengene aus den Bereichen Metabolismus und Virulenz deletiert werden. Die Auswahl dieser Kandidatengene wiederum erfolgt auf Transkriptom- (RNA-Sequencing) und Phänotyp-Ebene (phänotypischer Makroarray) sowie basierend auf der Genomanalyse und den in vivo Screenings. Abschließend werden diese Gene auf ihre in vivo-Relevanz mittels Deletionsmutanten in demselben Hühner-Infektionsmodell funktionell analysiert.

Charakterisierung des Nichtstruktur-Proteins p4 des neuen Virus European mountain ash ringspot-associated virus aus Eberesche (Sorbus aucuparia L.)

Biomasse - Boden - Sorten - Gene - Pappeln und Weiden im Kurzumtrieb

Im zweiten Projektjahr wurden die Versuchsflächen ergänzt. Eine im ersten Jahr missglückte Anpflanzung (Pappel) wurde wiederholt, und eine neue Versuchsfläche im Bereich Oststeiermark-Südburgenland wurde im Raum Hartberg gefunden und angelegt. Weiters wurden Demonstrationsflächen mit den bisher besten Pappel- und Weidenklonen im Raum Haag (Mostviertel, NÖ) angelegt. Diese Flächen sind alle wunschgemäß angewachsen. Ein Aussaatversuch mit Robinie schlug jedoch wegen der heißen Witterung im Frühjahr 2012 fehl. Die Pappelflächen wurden auf Rostbefall bonitiert; die Selektionen des BFW aus nordamerikanischen Schwarzpappeln zeigen sich als sehr vielversprechend. Bei den Weiden wurde die Tullner Versuchsfläche zurückgeschnitten, und die Aufwüchse des ersten Jahres wurden vermessen und gewogen. Es wurden Biomasse-Erträge bis zu 13 Tonnen pro Hektar und Jahr ermittelt. Im Labor wurde die Amplifikation von Genen aus Pappeln und Weiden fortgesetzt und um Versuche mit extrahierter RNA ergänzt.

Untersuchungen zum Mechanismus der pflanzlichen Stickstoffversorgung in der Ektomykorrhizasymbiose

Der Stoffaustausch zwischen Pilz und Pflanze stellt eine Hauptfunktion der Ektomykorrhizasymbiose dar. Wie er ermöglicht und kontrolliert wird soll im Rahmen dieses Projekts am Beispiel des Stickstoffs untersucht werden. Für den Pilz ergibt sich in der Symbiose die Notwendigkeit, die jeweilige Umgebung zu unterscheiden, da beispielsweise Aminosäuren von den Bodenhyphen aufgenommen und dann von den Hyphen des Hartigschen Netzes an die Pflanze abgegeben werden. Beide Hyhentypen unterscheiden sich in ihrem Stickstoffversorgungsstatus. Während dieser für Bodenhyphen niedrig ist, ist er in den Hyphen des symbiontischen Organs hoch, wie von uns anhand der Expression eines stickstoffabhängig regulierten Aminosäuretransportergens gezeigt wurde. In dem vorgeschlagenen Projekt soll daher unsere Hypothese, dass der durch Glutamin regulierte Stickstoffstatus der Hyphen ein wichtiges Element zur Steuerung der Aminosäureaufnahme bzw. -Abgabe in Ektomykorrhizapilzen ist, überprüft werden. Dazu soll die Glutaminsynthetase von Amanita muscaria mittels Antisense-RNA Technik inaktiviert werden, um so in den Hyphen des Pilz/Pflanze-Interfaces einen Stickstoffmangel zu simulieren. Anschließend soll die Auswirkung dieser Mutation auf die Stickstoffversorgung mykorrhizierter Pflanzen untersucht werden.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Genetische Ursachen des Schossens in Beta Arten und die Züchtung von Winterzuckerrüben

Zuckerrüben sind zweijährige Pflanzen, die nach einer längeren Phase niedriger Temperaturen mit dem Schossen beginnen. Damit sind sie für eine Aussaat vor dem Winter ungeeignet. Schossresistente Winterrüben haben theoretisch ein deutlich höheres Ertragspotenzial und könnten so zu einer interessanten Alternative für die Rübenproduktion werden. Neulich wurden von uns zwei wesentliche Schossregulatoren identifiziert (BTC1 und BvBBX19). Vermutlich regulieren beide gemeinsam die Expression der stromabwärts gelegenen Blühgene BvFT1 und BvFT2. In diesem Projekt werden diese Schossregulatoren in Zusammenarbeit mit Projektpartnern im SPP1530 sowohl in Zuckerrübe als auch in transgenen Arabidopsis-Pflanzen funktionell analysiert. Während BTC1-überexprimierende Zuckerrüben mit einer Transgen-Kopie nach Winter schossen, ist in transgenen Pflanzen mit größer als 1 Kopie die BTC1-Expression nahezu vollständig herunterreguliert, so dass diese auch nach Winter nicht schossen. Als Grund vermuten wir Cosuppression des nativen Gens durch die neu hinzugefügten Kopien. Diese Ergebnisse stellen eine gute Grundlage für die Züchtung von Winterzuckerrüben dar. Innerhalb dieses Projektes werden Hybriden erzeugt, die über zwei BTC1- Transgene verfügen und in denen durch Cosuppression die Expression aller BTC1-Kopien stark herunter reguliert wird. Im Folgenden werden diese Hybriden in der Klimakammer, im halboffenen Gazehaus sowie unter Feldbedingungen über Winter angebaut. Parallel dazu werden in einem zweiten Experiment doppelt rezessive btc1 und Bvbbx19 Zuckerrüben mit einer deutlich ausgeprägten Schossverzögerung nach Winter erzeugt. Da diese Pflanzen nicht transgen sind, können sie ohne weiteres von Züchtern genutzt werden. Darüber hinaus ziehen wir Zuckerrüben unter standardisierten Bedingungen in einer Klimakammer an, um aus den Sproßmeristemen RNA zu isolieren. Diese Arbeiten sind Grundlage für ein Phylotranskriptom-Experiment, welches von dem Partner Prof. I. Grosse im Rahmen des SPP 1530 koordiniert wird.

Aerobic mikrobielle Aktivität in der Tiefsee abyssal Ton

Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.

Identifizierung und molekulare Analyse der Diversität und Populationsstruktur von denitrifizierenden Bakterien in Abwasserreinigungsanlagen

Die im Rahmen dieses Projektes durchzuführenden Untersuchungen zu bakteriellen Populationsstrukturen sind eine wichtige Grundlage für die anderen Teilprojekte. Es handelt sich hierbei zum Teil um sehr arbeits- und zeitaufwendige Routinearbeiten. Im Gegensatz zu den Nitrifikanten, bei denen physiologische Eigenschaften und die Zugehörigkeit zu phylogenetischen Taxa korrelieren und zu deren Nachweis bereits ein umfangreicher Satz gruppenspezifischer, rRNS-gerichteter Oligonukleotidsonden vorliegt, handelt es sich bei den Denitrifikanten um eine phylogenetisch äußerst heterogene Gruppe. Mit Hilfe molekularbiologischer Techniken sollen erstmals grundlegende, strukturelle und physiologische Eigenschaften von Denitrifikanten aus Abwasserreinigungsanlagen kultivierungsabhängig untersucht werden. Die so gewonnenen Kenntnisse bilden die Grundlage für eine zielgerichtete Optimierung von Leistung und Stabilität denitrifizierender Anlagen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Funktionale Partitionierung der prokaryotischen Diversität unter verschiedenen Landnutzungsregimes

Die Kopplung zwischen drei dominanten Gruppen von Bodenbakterien (Acidobacteria, Actinobacteria, Alphaproteobacteria), Pflanzen, Bodenbedingungen und Landnutzung soll aufgeklärt werden. Die Untersuchungen konzentrieren sich auf (1) die Dynamik der funktionellen Kopplung zwischen aktiven Rhizosphärenbakterien und Pflanzen, (2) die spezifischen Funktionen von individuellen Bakterien beim Abbau von Wurzelexsudaten, Pflanzenstreu und Tierkadavern/Dung sowie (3) der zeitlichen Stabilität von mikrobiellen Gemeinschaften in der Rhizosphäre und nicht-durchwurzeltem Boden der Exploratorien. Die funktionelle Koppelung der Bakterien über den Kohlenstofffluss soll zeitlich hochaufgelöst mittels 13C-Pulsmarkierung von Wurzelexsudaten durch Captured RNA Isotope Probing (CARIP), sowie durch den Vergleich der Exsudatprofile mit der Zusammensetzung der Bakteriengemeinschaften mittels Hochdurchsatzsequenzierung aufgeklärt werden. Die individuelle funktionelle Rolle der Bakterien wird anhand der Aufnahme 13C-markierter Substrate mit nachfolgender Identifizierung der aktiven Phylotypen durch Stabile Isotopenbeprobung von RNA (SIP) sowie metagenomische und metatranskriptomische Ansätze untersucht. Die kurzfristigen Veränderung in der Zusammensetzung der Rhizosphärenbakterien und die jeweiligen Einflussgrößen werden analysiert. Langfristigere Effekte werden anhand von Hochdurchsatzsequenzierungen von 3 Probensätzen, die einen Zeitraum von 6 Jahren abdecken, ermittelt. Dies bietet die Gelegenheit, langfristigere Trends mit Änderungen in den Umweltparametern und in der Landnutzung zu analysieren.

1 2 3 4 522 23 24