API src

Found 413 results.

Optische Bestimmung von streckenintegrierten Aerosolparametern in der urbanen Atmosphäre

Ziel ist eine Geräteentwicklung für die unbeeinflusste Bestimmung von streckenintegrierten Aerosolparametern in einer anthropogen belasteten Atmosphäre. Das optische Messgerät wird in der Leipziger Stadtluft in 20 bis 40 m Höhe mit mehreren Lichtstrecken von einigen 100 m bis zu einigen Kilometern Länge gleichzeitig Messungen von Partikelextinktionsspektren bei Umgebungsfeuchte und für die Auswertung notwendige Spurengase durchführen. Aus den Extinktionsmessungen werden die Partikelgrößenverteilung und integrale Partikeleigenschaften im ungestörten Zustand mit Inversionsrechnungen berechnet.

Sekundäre Aerosolbildung und Partikelwachstum in der tropischen oberen Troposphäre: Messungen der chemischen Zusammensetzung der Aerosolpartikel mittels Aerosolmassenspektrometrie

Aerosolbelastung in der zukünftigen Atmosphäre (ALFA) - Verbesserung der Vorhersagefähigkeit atmosphärischer Aerosolbelastung durch molekulares Verständnis der Transformation von Emissionen in der Gegenwart und unter zukünftigen Szenarien

Atmosphärische Aerosole wirken auf die menschliche Gesundheit und beeinflussen den Strahlungshaushalt der Erde. Die Quellen, Bildungsmechanismen und Senken sekundärer Aerosole, welche aus der Transformation von organischen und anorganischen Vorläufergasen entstehen, sind nicht ausreichend verstanden, so dass eine genaue Vorhersagbarkeit der Aerosolbelastung unter gegenwärtigen Emissionen und zukünftigen Szenarien nicht möglich ist.Um ein genaueres Prozessverständnis zu erlangen, werden wir neue analytische Methoden entwickeln, die die Messung einzelner aerosolgetragener Moleküle in Echtzeit, sowie die Erstellung molekularer Fingerabdrücke von Aerosolfilterproben, ermöglichen. Hierfür werden wir ein ultra-hochauflösendes (OrbitrapTM) Massenspektrometer (MS) für die Echtzeit-Aerosolmessung adaptieren, um im Rahmen von Messkampagnen an der Simulationskammer SAPHIR am Forschungszentrum Jülich, die Chemie der Aerosole unter zukünftigen Emissionsszenarien zu untersuchen. An der SAPHIR Kammer werden wir VOC-Emissionen von Pflanzen unter Stress und deren Wechselwirkung mit SO2, NOX und NH3 studieren. Die zentrale Fragestellung dieser Experimente ist, inwiefern überschüssiges Ammoniak mit flüchtigen organischen Verbindungen (VOCs) in der Atmosphäre reagiert, und ob es im Aerosol zu einer verstärkten Bildung von absorbierenden organischen Stickstoff-Heterozyklen kommt. Die Relevanz heterogener photochemisch-induzierter Prozesse soll an der SAPHIR Kammer bei atmosphärischen Konzentrationen untersucht werden. Diese Untersuchungen sind nötig um Voraussagen darüber treffen zu können, inwieweit sich verändernde, zukünftige anorganische Emissionen und VOC-Emissionen gestresster Pflanzen einen Effekt auf die chemischen und physikalischen Eigenschaften von Aerosolen in der zukünftigen Atmosphäre haben werden.Neben den Kammermessungen in Jülich sollen Feldmessungen an solchen Orten unternommen werden, an denen eine besonders starke Wechselwirkung zwischen organischen und anorganischen Komponenten zu erwarten ist, und somit die Kammerexperimente im Hinblick auf deren atmosphärische Relevanz validiert werden können.Während der Echtzeit-Messungen mit dem online Aerosol-Orbitrap-MS werden wir Aerosolfilterproben sammeln und molekulare Fingerabdrücke der Aerosolzusammensetzung mit Hochleistungs-Flüssigchromatografie / Massenspektrometrie erstellen. Basierend auf Laborstudien zur Oxidation einzelner VOCs werden wir die molekularen Fingerabdrücke der Realproben mit den Laborexperimenten vergleichen. Eine open-access-"Aerosolomics"-Datenbank soll erschaffen werden, die die gemessenen Merkmale einzelner Oxidationsprodukte archiviert und online verfügbar macht. Dies wird eine „top-down“ Klassifizierung von Aerosolproben ermöglichen, mit deren Hilfe man Aussagen darüber treffen kann welche VOCs und welche Prozesse für die sekundäre Bildung von atmosphärischem Aerosol an den untersuchten Orten verantwortlich sind.

Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt E02: Thermodynamische Struktur, Wolken, Aerosole, und Strahlungseffekte der Ny-Alesund-Säule

Die umfassende Zielstellung dieses Teilprojektes ist es die thermodynamische Struktur, Wolken, Aerosole, Spurengase und Strahlungseffekte in der atmosphärischen Säule basierend auf einer Langzeitreihe auf der deutsch/französischen Forschungsstelle in Ny-Alesund/Svalbard zu charakterisieren und damit das Zusammenspiel verschiedenster Fernerkundungsinstrumente zu nutzen. Die Daten werden für Modelauswertungen und Verbesserungen verwendet, sowie dienen sie als Referenz für satelliten- und flugzeuggetragene Ableitungsalgorithmen und ergänzen so die in-situ Beobachtungen. Basierend auf hoch-qualitativen Beobachtungsdaten werden Vertikalprofile des thermodynamischen Zustandes, Wolken, Aerosole und Spurengaskonzentrationen unter der Verwendung von integrierten Profilansätzen abgeleitet, welche es erlauben eine Analyse des Strahlungseinflusses von Wolken, Aerosolen und Spurengasen (inklusive Wasserdampf und Ozon) durchzuführen.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Chemische und mineralogische Charakterisierung von Eisnuklei und Eisresiduen

Vorkommen, Häufigkeit, chemische Zusammensetzung und Mischungszustand jener Aerosolpartikel in der Erdatmosphäre, an denen sich durch heterogene Nukleation in unterkühlten Wolken Eis bilden kann (Ice Nucleating Particles = INP), werden experimentell untersucht. Diese Informationen sind wichtig für das Verständnis der Niederschlagsbildung, und finden in parametrisierter Form Eingang in meteorologische Modelle zur Vorhersage des Niederschlages. Das Projekt verwendet hierbei im Wesentlichen physikalische Methoden zur Identifikation und Isolation der Partikel aus der Atmosphäre, und nachfolgend elektronenmikroskopische Methoden zur mineralogischen Analyse einzelner Partikel. Die Identifikation jener wenigen Aerosolpartikel (ca. 1 von 10.000 bis 1 von 100.000), die Eisbildungsfähigkeit besitzen, erfolgt, indem eine Aerosolprobe einer Unterkühlung unter 0°C und Wasserdampfübersättigung ausgesetzt wird, und die an INP entstehenden Eiskristalle fotografiert und gezählt werden. Es werden sowohl Aerosolpartikel aus luftgetragenem Aerosol untersucht (aus dem Eiskeimzähler FINCH) wie auch Partikel, die aus einer Luftprobe auf einem Silizium-Probenträger niedergeschlagen und danach als INP identifiziert wurden (Eiskeimzähler FRIDGE). Eine dritte und vierte Methode (Ice-CVI und ISI) isolieren eisbildungsfähige Partikel, indem aus einer angesaugten Probe von Wolkenluft die Eiskristalle strömungstechnisch von den übrigen Luftbestandteilen getrennt werden. Alle Eiskeimproben werden im Rasterelektronenmikroskop auf Größe, Morphologie, Mischungszustand und chemische Zusammensetzung untersucht und die Ergebnisse der verschiedenen Ansätze verglichen. In Feldexperimenten werden Atmosphärenproben verschiedener geographischer Provenienz (Mitteleuropa, Forschungsstation Jungfraujoch, Wüstenstaub, Vulkanstaub) erhalten. In Laborexperimenten wird mit vorher gesammelt und charakterisierten Modellsubstanzen gearbeitet. Weiterhin wird durch tägliche Messungen der Anzahl-Konzentration und Zusammensetzung von Eiskeimen am Taunus Observatorium nahe Frankfurt über einen längeren Zeitraum untersucht, ob es Saisonalitäten, bevorzugte Quellgebiete (z.B. Wüsten, Industrie, etc.) und biologische Einflussfaktoren (z.B. Pollen, Pflanzenabrieb, Bakterien) für das Vorkommen von Eisnuklei gibt.

Einfluss organischer Aerosole auf Luftqualität und Klima

Organische Aerosole (OA) sind wichtige Bestandteile atmosphärischer Partikel. Je nach Region können sie zwischen 20 und 90% der gesamten Submikron-Partikelmasse betragen. Dennoch sind organische Aerosolquellen, atmosphärische Prozesse und Ableitung sehr ungewiss. Vorrangiges Ziel dieses Antrages ist es, die Auswirkungen organischer Aerosole auf Luftqualität und Klima zu untersuchen. Dazu soll die Darstellung des Aerosolaufbaus und die Weiterentwicklung in einem globalen Klima-Chemie-Modell verbessert werden. Das geplante Vorhaben basiert auf einem rechnerisch effizienten Modul zur Beschreibung der Zusammensetzung und Entwicklung atmosphärischer Aerosole in der Atmosphäre (ORACLE), ein Teil des ECHAM5/MESSy (EMAC) Klima-Chemie-Modells. ORACLE wird unter Berücksichtigung aller auf Labor- und Feldmessungen basierenden neuesten Erkenntnissen und Entwicklungen aktualisiert werden, um den zunehmend oxidierenden, weniger flüchtigen und stärker hygroskopischen Charakter des organischen Aerosols während der atmosphärischen Alterung mittels Nachverfolgung ihrer beiden wichtigsten Parameter, Sättigungskonzentration und Sauerstoffgehalt, genauer darzustellen. Dieses Modellsystem soll eingesetzt werden, um die Unsicherheit hinsichtlich der Einflüsse organischer Aerosole auf die globale Luftqualität und den Strahlungsantrieb zu verringern, und zwar durch: i) Quantifizierung des relativen Beitrags der Bildung sekundärer organischer Aerosole (SOA) sowie Emissionen primärer organischer Aerosole (POA) auf den Gesamthaushalt organischer Aerosole in unterschiedlichen Umgebungen; ii) Quantifizierung des Beitrags von Biomasseverbrennung und Schadstoffemissionen sowie chemische Alterung und weiträumige Übertragung auf den Gesamthaushalt organischer Aerosole; iii) Ermittlung, inwieweit SOA Konzentrationen durch biogene und anthropogene Emissionen sowie photochemische Alterungsprozesse beeinträchtigt werden; iv) Untersuchung der Weiterentwicklung von SOA-Bildung aus natürlichen Quellen durch deren Interaktion mit anthropogenen Emissionen; v) Abschätzung der Auswirkungen photochemischer Alterungsprozesse auf die physikalisch-chemischen Eigenschaften organischer Aerosole (z.B. Hygroskopizität, Volatilität) und vi) Einschätzung der indirekten Auswirkungen organischer Aerosole auf das Klima. Vor allem aber wird der vorliegende Antrag der kommenden Generation von Chemie-Klimamodellen eine realistische Beschreibung der chemischen Entwicklung organischer Aerosole in der Atmosphäre liefern, was für die Reduzierung der Aerosol-Unsicherheiten in der Luftqualität und bei Klimasimulationen von wesentlicher Bedeutung ist. Es ist auch davon auszugehen, dass das Forschungsvorhaben wertvolle Informationen zu den Quellen und der Produktion von OA weltweit liefert, was derzeitige CCMs nicht leisten können und welche von Politikern zur Entwicklung zukünftiger wirksamer Emissionsminderungsstrategien genutzt werden können.

Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften

Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.

Chemie in Nanometerpartikeln: Einzigartige Brutstätte für Oligomere?

Die Bildung neuer Partikel und ihr anschließendes Wachstum in der Troposphäre sind wichtige Prozesse, die die Zusammensetzung der Atmosphäre und den globalen Klimawandel beeinflussen. Nach der Entstehung der Nanopartikel durch Keimbildung wird ihr Wachstum von organischen Molekülen bestimmt. Zurzeit wird die Bildung der extrem geringflüchtigen Verbindungen, die für das Wachstum von Nanopartikeln benötigt werden, ausschließlich auf Basis von Gasphasenchemie diskutiert. Die Partikelembryonen selbst bieten jedoch eine einzigartige nanoskalige Umgebung, die chemische Reaktionen innerhalb der neu gebildeten kondensierten Phase beeinflussen können. Eine physikalisch-chemische Besonderheit von Nanometerpartikeln ist der zunehmende Innendruck (Laplace pressure). Da bindungsbildende chemische Reaktionen (z. B. Oligomerisierung) bei höheren Drücken begünstigt werden, gewinnen solche Reaktionen in kleinen Partikeln an Bedeutung. Daher könnten Partikelgrößen-abhängige chemische Reaktionen eine entscheidende Rolle im Lebenszyklus von atmosphärischen Aerosolen spielen, indem sie die Lücke zwischen der anfänglichen Bildung von Partikelembryonen und ihrem Wachstum in Größen schließen, in denen ihre Überlebenswahrscheinlichkeit größer wird und sie schließlich als Wolkenkondensationskeime dienen können. Obwohl motiviert durch atmosphärenchemische Fragestellungen, kann das erarbeitete Wissen über größenabhängige chemische Reaktionen auch zu einem besseren Verständnis von Gleichgewichtsreaktionen in organischen Nanoreaktoren führen sowie - in einem sehr allgemeinen Sinn - ebenfalls Beiträge zum Verständnis der Entstehung des Lebens liefern.

Vulkanische Auswirkungen auf die Dynamik der Atmosphäre (VolDyn)

Eine Fülle an wissenschaftlichen Studien hat sich mit der Reaktion der stratosphärischen und troposphärischen Dynamik auf vulkanische Aerosole beschäftigt. Wegen der geringen Anzahl an gut beobachteten großen Eruptionen sowie der internen Variabilität des Systems gibt es zwar immer noch einige unbeantwortete Fragen, aber dennoch einen allgemeinen Konsens dass große Eruptionen insbesondere zu einer Beschleunigung der stratosphärischen Meridionalzirkulation, einer Verstärkung des stratosphärischen Polarwirbels und einer troposphärischen Reaktion auf diese stratosphärische Anomalien führen. Wenig ist hingegen über die Auswirkung auf die Mesosphäre bekannt. Es gibt indirekte Hinweise auf Temperaturanomalien durch die Beobachtung von polaren mesosphärischen Wolken (PMC) sowie direkte aus Lidarbeobachtungen nach der Pinatuboeruption. Der potenzielle Mechanismus dahinter ist allerdings weitgehend unbekannt. Unser Projekt möchte diese Wissenslücke schließen.In Phase I von VolDyn konnten wir zeigen, dass Daten des HALOE (Halogen Occultation Experiment) Satelliteninstruments, welches seine Beobachtung kurz nach dem Pinatuboausbruch aufnahm, auf positive Temperaturanomalien in der oberen Mesosphäre hindeuten, die möglicherweise mit dieser Eruption zusammenhängen. Erste Simulationen mit dem UA-ICON (upper atmosphere icosahedral non-hydrostatic) Modell zeigen für die Sommerhemisphäre einen starken Einfluss der stratosphärischen Zirkulationsanomalien auf die Mesosphäre. Derzeit untersuchen wir inter-hemisphärische Kopplungsprozesse.In Phase II von VolDyn werden wir weiterhin UA-ICON nutzen, um die Sensitivität der mesosphärischen Störung systematisch auf spezifische Charakteristika einer Eruption zu untersuchen, etwa die emittierte Schwefelmasse, den Breitengrad der Eruption oder die Jahreszeit während des Ausbruches.Da die mesosphärischen Anomalien wahrscheinlich sensitiv gegenüber der Charakteristik von stratosphärischen Zirkulationsanomalien sind, wollen wir die Pinatuboeruption (der größte Vulkanausbruch in der Satellitenära) und ihren Einfluss bis in die Mesosphäre so realistisch wie möglich simulieren und dabei auf ein Nudging der Stratosphäre zurückgreifen. Unser Ziel besteht darin, nicht nur einen qualitativen, sondern auch einen quantitativen Vergleich mit existierenden Beobachtungen zu ziehen – etwas, dass für andere massive Eruptionen wie die des Tambora oder Krakatau nicht möglich ist. Um die Simulationsergebnisse mit Beobachtungen zu vergleichen, werden wir praktisch alle verfügbaren Temperaturmessungen nutzen, welche die Mesosphäre zum Zeitpunkt des Pinatuboausbruches (oder kurz danach) erfasst haben.Nicht nur die Zirkulation, sondern auch Wasserdampfanomalien könnten zu den beobachteten PMC-Signalen beigetragen haben. Aus diesem Grund wollen wir den Transport von vulkanischem Wasserdampf bis in die polare Sommermesopausenregion in weiteren Modellstudien analysieren.

Entwicklung eines Online-Parametrisierungsansatzes zur Vorhersage der Hygroskopizität von organischem Aerosol in der Umgebung auf der Grundlage von hochauflösenden AMS-Messungen

Verschiedene atmosphärische Prozesse werden durch die Wasseraufnahmefähigkeit (Hygroskopizität) von Aerosolpartikel angetrieben, wie z.B. die Lichtstreuung der Partikel, die Bildung von Wolkentröpfchen, die Aktivierung von Wolkenkondensationskeimen (CCN), die Veränderung des hydrologischen Zyklus sowie der Strahlungsantrieb der Wolken. Trotz seiner entscheidenden Rolle für die Atmosphäre und das Klima gibt es immer noch eine große Diskrepanz im Wissen über den Beitrag des organischen Aerosols, das einen größeren Teil der Submikrometer-Partikelmassenkonzentration darstellt, zur gesamten Hygroskopizität. Der folgende Projektantrag schlägt einen ganz neuen Ansatz zur Parametrisierung der hygroskopischen Eigenschaften von organischen Aerosolpartikeln vor, der ein chemisches Online-Funktionskonzept verwendet, das auf der Analyse der organischen Massenspektren aus den Messungen des High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) basiert. Die Entwicklung dieser Parametrisierung wird auf einer Kombination von Humidified Hygroscopic Tandem Differential Analyzer (HTDMA) und HR-ToF-AMS Messungen in einem dualen, aber komplementären Ansatz basieren. Dazu wird ein intensives Laborscreening von chemischen Verbindungen mit gezielten funktionellen Gruppen und einer Mischung aus verschiedenen organischen Standards durchgeführt werden. Gleichzeitig wird ein maschineller Lernansatz auf der Grundlage früherer TROPOS-Feldkampagnen durchgeführt werden, der Messungen beider Instrumente integriert. Ein Vergleich zwischen den beiden Ansätzen wird für die endgültige Validierung in der Studie durchgeführt werden. Diese Parametrisierung wird dann in zwei Feldkampagnen validiert, die jeweils einer bestimmten Art von organischem Aerosol gewidmet sind: eine von biogenem Aerosol dominierte Umgebung in Melpitz (Deutschland) und eine von städtischem Aerosol dominierte Umgebung in SIRTA (Frankreich), wo beide Instrumente im Rahmen dieses Projekts eingesetzt werden sollen. Die Online-Hygroskopizität des Umgebungsaerosols wird durch die Kombination von HR-ToF-AMS (organisches und anorganisches Aerosol) und optischen Messungen des Aethalometers (äquivalenter schwarzer Kohlenstoff) abgeschätzt und dann mit der vom HTDMA gemessenen verglichen. Unter Ausnutzung der Vorteile der hochauflösenden und einheitlichen Massenspektrenauflösung des HR-ToF-AMS und des Vorhandenseins des Aerosol Chemical Speciation Monitor (ACSM) an beiden ausgewählten Feldstandorten wird die Methode auch für das ACSM optimiert. Infolgedessen wird eine automatische Routine für beide Instrumente (HR-ToF-AMS und ACSM) entwickelt, die in das ACSM-Netzwerk des Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS) implementiert wird, um eine einzigartige Möglichkeit für eine zeitnahe und langfristige Messung der Aerosol-Hygroskopizität über Europa zu bieten.

1 2 3 4 540 41 42