API src

Found 34 results.

Related terms

Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites

Das Projekt "Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.

Impacts of well and Human Intrusion on Khulan (Wild Ass) and other threatened species in the Gobi Desert

Das Projekt "Impacts of well and Human Intrusion on Khulan (Wild Ass) and other threatened species in the Gobi Desert" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. The importance of the Gobi environment to the conservation of Khulan and other threatened wildlife and to the future of the pastoral livestock production is undeniable. At the present time, Mongolia is anticipating development of a commercialized agricultural sector that could easily cause greater intrusion of human activities in the Gobi environment than current pasto-ral livestock production. Development of other sectors of the Mongolian economy, especially mining and road construction, could also impact environmental security in general and habitat needs of the khulan and associated wildlife in the Gobi environment in particular. Work is required to clarify to what extent (if any) the wild ass is affected or competes with domestic livestock and other human intrusions, and to what degree. On the basis of these findings, ma-nagement steps for both khulan protection and rural livelihood/water resources development can be developed.

D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam

Das Projekt "D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tierproduktion in den Tropen und Subtropen (480), Fachgebiet Aquakultur-Systeme und Tierernährung in den Tropen und Subtropen (490i) durchgeführt. Background: Aquaculture significantly contributes to protein supply and cash income of Black Thai farmers in Yen Chau, Son La province, Northern Vietnam. Fish is produced for cash income (2/3rd) and subsistence (1/3rd) while self recruiting species (small fish, crustaceans and molluscs) provide additional protein for home consumption. The current aquaculture system is a polyculture of the macroherbivorous grass carp as main species together with 3-5 other non-herbivorous fish species like Common Carp, Silver Carp, Bighead Carp, Mud Carp, Silver Barb and Nile Tilapia. With a rearing period of 21 months, the productivity of the aquaculture system amounts to 1.54 +- 0.33 t ha-1 a-1 and can be characterized as low. Nearly each household has at least one pond, which serves multiple purposes and is operated as a flow-through-system. The steady water flow is advantageous for the culture of grass carp, but causes a continuous loss of nutrients and high turbidity and thereby limits the development of phytoplankton and zooplankton which are natural food for non-herbivorous species. The farmers are using mainly green leaves (banana, bamboo, cassava, maize and grass) and crop residues (rice bran, rice husk, cassava root peel, distillery residue) as feed input, which is available to Grass Carp while non-herbivorous fish species are not fed specifically. Manure is used as fertilizer. The uneaten parts of fed plants are sometimes accumulating in the pond over several years, resulting in heavy loads of organic matter causing oxygen depletion. Anaerobic sediment and water layers limit the development of zoobenthos and may provide a habitat for anaerobe disease agents. Since 2003 an unknown disease condition has been threatening Grass Carp production and is having a major economic impact on the earnings from fish farming in Yen Chau region. Other fish in the same ponds are not affected. Especially in March-April and in September-October the disease is causing high morbidity and mortalities of Grass Carp in affected ponds and is thereby decreasing the dietary protein supply and income generation of Black Thai farmers. Little is known about the definition or aetiology of the disease condition.

Effects of nurse tree species on growth, environment and physiology of underplanted Toona ciliata (F. Muell.)

Das Projekt "Effects of nurse tree species on growth, environment and physiology of underplanted Toona ciliata (F. Muell.)" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. Toona ciliata (Australian red cedar) is highly valued for veneer and furniture production and endangered in its natural ecosystems due to exploitation. This work aims to improve the availability of this wood on the market and help reduce pressure on the species in its native environment. An afforestation project cultivating Toona ciliata was introduced to the study site in Misiones, Argentina. The local cultivation faces losses caused by drought and frost, because T. ciliata requires overstory protection when young. Consequently, Grevillea robusta, Pinus elliottii x Pinus caribaea, and Pinus taeda, nurse tree species which also produce sought-after wood were chosen to provide protection. One-year-old T. ciliata seedlings were planted underneath each of the six-year-old nurse species. An inventory after one year indicated that both survival and height increment were highest underneath G. robusta and lowest underneath P. elliottii x P. caribaea. In this study I am examining possible facilitation and competition mechanisms between the overstory and understory T. ciliata. Extensive empirical data collected over the course of 3 years will be utilized to project potential growth scenarios for several rotations using a computer based forest growth model.

Science for the Protection of Indonesian Coastal Environment (SPICE)

Das Projekt "Science for the Protection of Indonesian Coastal Environment (SPICE)" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. The Indonesian Archipelago harbours the most diverse marine habitat on earth, but also the presently most endangered. Overfishing, deleterious fishing practices and land-based sources of pollution result in a dramatic decline of the reef-based ecosystems. Coral reefs thrive in clear oligotrophic water. Deteriorating water quality due to increased terrigenous inputs of sediments, nutrients and pollutants are believed to be among the major causes of the demise of Indonesian coral reefs over the last decades. The pelagic cycling of material, production and development of larvae in shallow coastal waters as well as the exports of material to the benthos and adjacent deep water ecosystem are yet poorly understood. In this program 12 Indonesian and 14 German universities and institutions are involved. From the German side it is funded by the Federal Ministry of Education and Research (BMBF). The Center for Tropical Marine Ecology (ZMT) is responsible for the overall coordination. The main goal of the project is to strengthen the scientific basis for the protection of coral reefs in Southeast Sulawesi, harbouring some of the richest but also most endangered coral reefs in the world. In the Spermonde Archipelago off Makassar coral reef losses amounted to 20 Prozent over the last 12 years, eroding the income base for many thousands of families. Regulations related to the marine environment and its valuable resources have not been effectively implemented, and public awareness among the growing local population is still very limited. The aim of the AWI plankton group is to assess the significance of suspended matter for the reef organisms and to demonstrate that environmental changes are an important factor for phyto- and zooplankton communities and hence, for their consumers. To achieve this goal, quantitative studies of plankton occurrence and distribution are essential on various spatial and temporal scales. Further topics are the duration of the pelagic phase of economically important benthic organisms and the life cycles of dominant zooplankton species.

Quantifying and Understanding the Earth System - JI Forest-Climate-Projects in North-West Russia

Das Projekt "Quantifying and Understanding the Earth System - JI Forest-Climate-Projects in North-West Russia" wird vom Umweltbundesamt gefördert und von GFA Envest GmbH durchgeführt. The QUEST project builds capacity through the development of new REDD+ like methodologies for Joint Implementation forest. This includes the development of the first methodology for Improved Forest Management based on 'Forest Management' under Article 3.4 of the Kyoto Protocol. These methodologies may be applied by other JI project developers. The QUEST project will, therefore, strenghten project activities in Land Use, Land Use Change and Forestry sector. QUEST also involves the application on four demonstrator forestry projects in Russia and Romania allowing for the investigation of the projects impact with respect to energy use, policy, verification and methodological issues and social, environmental and hydrological concerns with Agriculture Forestry and Other Land Use (AFOLU) in a 'hands on', 'learning by doing' approach. It is the projects intention to contribute to the conservation of the Dvinsky, one of intact forest as well as to generate emission reductions. A successful implementation of the Dvinsky Climate Action Project might serve as a lighthouse example for the JIs potential to conserve Russias endangered HCV forests. The project activity will improve existing forest practices aiming at an increment of biomass volume in forests under concession. Carbon finance will enable logging firms to switch from the traditional clear cutting to a group felling system, thereby reducing the negative impact of forest management on the ecological system. Concluding, JIFor explores the LULUCF framework, develops baseline and monitoring methodologies, facilitates forest climate projects based on 'Forest Management', Art. 3.4. This provides important lessons learnt for a future REDD+ policy scheme under a follow up agreement to the Kyoto Protocol. GFA ENVEST contributes to: Assessment of the policy context of LULUCF and JI in Europe including permanence, issuance of AAUs for LULUCF projects, issuance of RMUs for LULUCF projects (considering the design of the IET) and evaluation of annual- vs- five year accounting on a national level; Baseline and monitoring methodologies for JI; development of methodologies for Improved Forest Management and Forest Conservation; JI Project Design Document development - Dvinsky Forest Conservation in Russia; JI Project Design Document development - Svetloserskles Improved Forest Management in Russia; Development of tools, Transferability, Scalability, and Identification of Future Projects and Research Needs; Assessment of carbon rights ownership for forestry projects in Russia.

Analysis of impacts of woodland fragmentation on indicator species in consideration of landscape metrics

Das Projekt "Analysis of impacts of woodland fragmentation on indicator species in consideration of landscape metrics" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Arbeitsbereich für Weltforstwirtschaft und Institut für Weltforstwirtschaft des Friedrich-Löffler-Institut, Bundesforschungsinstitut für Tiergesundheit durchgeführt. In our central European man-made landscape more and more habitats become destroyed or fragmented because of the increasing anthropogenic need of available land. Roads, residential, and industrial areas separate formerly connected habitats into small remnants, thus creating small subpopulations. Especially stenotopic species with low dispersal power are endangered because exchange of specimen between different habitat patches is reduced or entirely inhibited. Methods for the quantification of fragmentation are necessary to develop management and species-specific conservation plans for habitat networks. In this project we investigate the structure of the German woodlands by calculating landscape metrics and study the impacts of fragmentation on different FFH-species' occurrences. Indices which significantly quantify the fragmentation of woodlands are identified by using a simulation model of neutral landscapes. ATKIS2008-data are used for the calculation of the selected landscape metrics. Topographic maps (TK25) serve as the interface between determinated fragmentation of forest and habitat modelling. A niche model of different species is calculated to demonstrate the impacts of woodland fragmentation on different woodland species (e.g. wild cat (Felis sylvestris), barbastelle bat (Barbastella barbastellus), stag beetle (Lucanus cervus), and black stork (Ciconia nigra).

Improvement of forest management key strategies: a contribution to conservation and sustainable land use

Das Projekt "Improvement of forest management key strategies: a contribution to conservation and sustainable land use" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Waldbau durchgeführt. In spite of a variety of efforts, tropical forests are still threatened by exploitation and conversion to agricultural land-use. Besides legal protection, sustainable management concepts are essential for stable conservation of these ecosystems. This project aims at identifying and optimizing the potentials for forest management for three different ecosystems (Dry Forest, Tropical Mountain Rain Forest, Paramo) along a height- and climate gradient in Southern Ecuador. Therefore, multiple and locally differentiated aspects of forest management have to be considered: the direct provision of goods (timber and non-timber forest products) as well as ecosystem services (carbon sequestration, water regulation), which are of increasing importance; moreover, the effects of forest management on biodiversity and the impacts of climate change on resilience indicators and the potential distribution of selected species with high potential for sustainable management or conservation should be investigated. First of all, the most important forest structure types and possible improvements of management alternatives have to be identified at the three sites for the assessment of different management concepts. The alternatives will be tested on experimental field plots and consequently monitored for their impacts on the locally most important criteria of forest management. A sound decision support tool will be developed, taking into account uncertainties with regard to input parameters and the relevance of different criteria of forest management. Therefore, Multi Criteria Decision Analysis will be used to generate locally adapted management concepts for the different ecosystems. Those concepts should be able to consider the multiple functions of forest management and will represent the forestry component in sustainable land-use models. The comprehensive studies will be carried out in close cooperation with other scientific teams from Germany and Ecuador as well as local institutions of relevance for forest management. The direct involvement of Ecuadorian students and young academics and the integration of the investigations in educational concepts will contribute to capacity building and local efforts for the enhancement of environmental competencies. Moreover, the experimental field plots will serve in parts as demonstration objects for the implementation of sustainable forest management concepts.

Vulnerability and Resilience of Rangeland Vegetation as Affected by Livestock Management, Soils and Climate

Das Projekt "Vulnerability and Resilience of Rangeland Vegetation as Affected by Livestock Management, Soils and Climate" wird vom Umweltbundesamt gefördert und von Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz INRES, Arbeitsgruppe Pflanzenbau durchgeführt. The vegetation of East and South African savannahs has been shaped by the complex interaction of geo-biophysical processes and human impact. For both regions a controversial discussion is pertinent, as to whether massive degradation threatens the sustainability of livelihoods in these regions. Rangeland vegetation is mainly affected by environmental conditions (soil and climate) and by livestock management. Extent and interaction of these drivers are not well understood but have profound impacts on the resilience and vulnerability of these systems to be shifted toward unfavourable degraded or bush encroached states. The project aims to analyse and model rangeland vegetation in response to range management including livestock, soil quality and climatic conditions and to assess the impacts of changes in these conditions on the resilience and vulnerability of rangeland systems. Field measurements, remote sensing of vegetation patterns and dynamics and simulation modelling will be used to understand the dynamics of rangeland vegetation. We will use the 'fast' or 'state' variables potential of pastures to produce palatable biomass, the variability of this production, and the system's potential to recover from disturbance impact as indicators of resilience. 'slow' variables that control (or drive) the 'fast' variables such as management, climate and soil variables are recorded in cooperation with other subprojects as with A1 for soil variables. Results of the project will show which management activities are most favourable for individual regions to sustain plant production in the long term.

Conflict Resolution, Management and Problem Solving for Sustainable Resource Utilization (COMPROMISE)

Das Projekt "Conflict Resolution, Management and Problem Solving for Sustainable Resource Utilization (COMPROMISE)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Renewable natural resources (e.g. fish stocks and forests) are threatened worldwide due to non-sustainable exploitation and global environmental change, making depending industries and regions vulnerable. Over-exploitation is typically characterized by over-capitalization and destructive competition between small-scale and regionally/globally acting enterprises. In COMPROMISE the complex interactions between natural, social and institutional systems related to this will be investigated with an integrative approach. It is a key feature of such system that they characterised by low levels of knowledge. This holds for the dynamics of stocks, the economic characteristics of firms, strategies of the fishing industry, as well as for the impact of policy frameworks. Thus, in order to provide further knowledge qualitative methods are needed. The encompassing analysis starts with case studies of some fisheries in developing countries under stakeholder involvement. Typical factors and agents, patterns and conflicts will be characterized by drawing from expertise from system analysts, social and natural scientists, combined with modern modelling methods. The aim is to identify success factors for a sustainable management of renewable resources.

1 2 3 4