Das geplante Gesamtvorhaben soll sich mit der wissenschaftlichen Beschreibung und der versuchstechnischen Ermittlung des Ermüdungsverhaltens von Beton, Betonstahl und deren Verbund im Bereich sehr hoher Lastwechselzahlen bis N = 10^7 befassen. Das Institut für Massivbau wird schwerpunktmäßig das Verbundverhalten von Beton und Betonstahl im Bereich von sehr hohen Lastwechselzahlen bis N = 10^7 unter Zugschwellbeanspruchung untersuchen und dabei analysieren, wie sich die Verbundspannungs-Schlupf-Beziehung von Betonen verschiedener Festigkeitsklassen auf Grund der hohen und sehr hohen Lastwechselzahlen verändern. Des Weiteren wird der Einfluss der Belastungsfrequenz und -geschwindigkeit auf das Verbundverhalten zwischen Beton und Betonstahl im Bereich der sehr hohen Lastwechselzahlen Gegenstand der Untersuchungen sein.
Das Ziel des Gesamtvorhabens liegt in der versuchstechnischen Ermittlung und der wissenschaftlichen Beschreibung des Ermüdungsverhaltens von Beton, Betonstahl und deren Verbund im Bereich sehr hoher Lastwechselzahlen. Das Teilvorhaben der BAM befasst sich mit der Untersuchung des Maßstabseffektes sowie des Einflusses der Prüfkörpergeometrie auf das Ermüdungsverhalten des Betons. Durch Ermittlung eines Anpassungsfaktors kann die Vergleichbarkeit der Ergebnisse unterschiedlicher Prüfeinrichtungen sichergestellt bzw. kann dieser Einfluss durch Empfehlung einer geeigneten Probekörpergeometrie ausgeschaltet werden. Weiterhin sollen die Untersuchungen die Übertragbarkeit der Erkenntnisse aus bisherigen Untersuchungen an üblichen Laborproben auf praxisrelevante Bauteilabmessungen überprüfen. Das betrifft sowohl die Kenntnisse zu den Schädigungsmechanismen im Beton als auch die Anwendbarkeit von zerstörungsfreien Messmethoden zur Erfassung des Schädigungszustandes des Betons.
Das Ziel von marTech ist es, Teilaspekte der Technologieerprobung und -entwicklung für 1) Tragstrukturen von Offshore-Windenergieanlagen (3.1.4) sowie 2) Anlagen und Technologien zur Nutzung der Wellen- und Tideströmungsenergie (3.5) durch wissenschaftliche Begleitforschung in einer signifikant erweiterten, großmaßstäblichen Versuchseinrichtung im Großen Wellenkanal Hannover voranzutreiben. Konkret werden drei Pilotprojekte zu einem Wellenenergiekonverter, zu einer Filter- und Dichtungsbahn und einem Kolkschutzsystem unter Gewährleistung wirklichkeitsnaher Umweltrandbedingungen zusammen mit der Industrie konzeptioniert und durchgeführt. Das hier beantragte Projekt marTech bildet damit alle wesentlichen Einwirkungen durch Wellen, Tideströmung und die hydro-geotechnischen Prozesse im Seeboden in einer großmaßstäblichen Versuchseinrichtung ab und ermöglicht dadurch wirklichkeitsnahe Verhältnisse unter kontrollierten und reproduzierbaren Laborbedingungen, die es zukünftig erlaubt, neue maritime Technologien zusammen mit der Industrie belastbar zu erproben bzw. weiter zu entwickeln.
Das Ziel von marTech ist es, Teilaspekte der Technologieerprobung und -entwicklung für 1) Tragstrukturen von Offshore-Windenergieanlagen (3.1.4) sowie 2) Anlagen und Technologien zur Nutzung der Wellen- und Tideströmungsenergie (3.5) durch wissenschaftliche Begleitforschung in einer signifikant erweiterten, großmaßstäblichen Versuchseinrichtung im Großen Wellenkanal Hannover voranzutreiben. Konkret werden drei Pilotprojekte zu einem Wellenenergiekonverter, zu einer Filter- und Dichtungsbahn und einem Kolkschutzsystem unter Gewährleistung wirklichkeitsnaher Umweltrandbedingungen zusammen mit der Industrie konzeptioniert und durchgeführt. Das hier beantragte Projekt marTech bildet damit alle wesentlichen Einwirkungen durch Wellen, Tideströmung und die hydro-geotechnischen Prozesse im Seeboden in einer großmaßstäblichen Versuchseinrichtung ab und ermöglicht dadurch wirklichkeitsnahe Verhältnisse unter kontrollierten und reproduzierbaren Laborbedingungen, die es zukünftig erlaubt, neue maritime Technologien zusammen mit der Industrie belastbar zu erproben bzw. weiter zu entwickeln.
Das IMK-IFU des KIT bearbeitet die numerische Modellierung der mesoskaligen Wind- und Turbulenzverhältnisse und führt die Windlidar-Messungen durch. Die Modellierung wird mit dem mesoskaligen Modell WRF und dem feiner auflösenden Modell WRF-LES erfolgen. Die beiden Modelle sind im Verbundvorhaben als Teil einer Modellkette vorgesehen, die skalenmäßig bis hinunter zur Rotorblattumströmung reichen soll. Die Windmessung soll kampagnenartig mit drei Windlidaren, die zu einem 'virtuellen Masten' synchronisiert werden, erfolgen. Das IBF des KIT wird im Blick auf die Wechselwirkung von Baugrund und Gründung die beiden FWEA mit einer Instrumentierung versehen, die weiterführende Messungen und detailliertere Modellierungen erlauben. Das GPI des KIT untersucht in einem geophysikalischen Langzeitexperiment (mehrere Jahre) die emittierten Bodenerschütterungen, deren Ausbreitung und ihre Welleneigenschaften um das Testfeld an der FWKA. Es sollen hierfür erstmals drei Sensoren in flachen Bohrungen an einer WEA dauerhaft installiert werden, welche kontinuierlich in den drei Raumrichtungen die Bodenbewegung aufzeichnen.
Die Offshore Windenergie ist wesentlich für die Transformation des Energiesystem hin zu einer treibhausgasneutralen Energieversorgung sowie für die Industrie im Rahmen der Technologieentwicklung und -führerschaft. Um in Europa günstige Entwicklungen für die Offshore Windenergie zu schaffen, haben die EU Nordseeanrainerstaaten im Juni 2016 die 'Erklärung zur Energiezusammenarbeit im Nordseeraum' verabschiedet. Im Zuge dieser Initiative wurden thematische Arbeitsgruppen gebildet, wovon sich eine mit den Harmonisierungspotenzialen von technischen Standards beschäftigt. Hierzu sollen von den Mitgliedsstaaten verschiedene Themen unter aufgeteilter Federführung bearbeitet und jeweilige Harmonisierungstendenzen herausgearbeitet werden. Im Zuge dessen hat Deutschland die Aufgabe übernommen, das Thema 'Baugrunderkundung' näher zu beleuchten. Das Projekt zielt darauf ab, Deutschland bei der Erfüllung dieser Aufgabe zu unterstützen. Hierzu sollen das Prozedere und die Normen der Baugrunderkundung in Deutschland und den Nordseeanrainern der EU Mitgliedsstaaten systematisch aufbereitet werden. Im Anschluss sollen die jeweiligen Vorgehensweisen und Standards der entsprechenden Staaten gegenübergestellt werden. Es sollen die jeweiligen Vorzüge und Nachteile, die mit den Vorgehen einhergehen, herausgearbeitet werden und identifiziert werden, ob und an welcher Stelle Harmonisierungsoptionen bestehen. Zudem sollen mögliche Kostensenkungspotenziale betrachtet werden.
Im Teilprojekt 'Numerische Strukturuntersuchungen und Logistik' werden Untersuchungen zur technischen und wirtschaftlichen Machbarkeit der zu entwickelnden Betonjacket-Struktur durchgeführt. Dies beinhaltet numerische Simulationen und Parameterstudien zur Bemessung der Struktur nach aktuellen Normen, Richtlinien und Standards, die bei Errichtung eines Offshore-Windparks in der Ausschließlichen Wirtschaftszone (AWZ) zur Anwendung kommen. Gleichzeitig werden Transport- und Logistikkonzepte erarbeitet, die die gewonnenen Designinformationen aus der Bemessung berücksichtigen. Nach jeder Designiteration wird ein Benchmarking durchgeführt, das die Wirtschaftlichkeit der Substruktur untersucht und Optimierungsmaßnahmen aufzeigen soll.
In 'ConJack' wird vom Forschungsverbund bestehend aus der GRBV Ingenieurgesellschaft, dem iBMB der TU Braunschweig und der Firma Europoles die Eignung einer neuartigen Gründungsstruktur für OWEA auf Basis einer Fachwerkstruktur aus ultrahochfesten Schleuderbetonrohren untersucht. Die Jacket-Struktur soll nicht nur wirtschaftlichen, sondern auch technischen und ökologischen Gesichtspunkten genügen, um eine Alternative für existierende Stahlgründungsstrukturen - insbesondere für Tiefen größer als 40 m - darzustellen. Die Hauptmotivation von Europoles entsteht aus der Überzeugung hinsichtlich des Mehrwerts des Werkstoffs Beton, der bereits bei zahlreichen Meeresbauwerken erfolgreich eingesetzt wird. Mithilfe der Schleuderbetontechnologie, die durch ihr Herstellverfahren einen äußerst dichten und porenarmen Beton liefert und somit einen außerordentlichen Eindringwiderstand gegenüber aggressiven Flüssigkeiten aufweist, wie sie in maritimer Umgebung vorhanden sind, sollen diese Vorzüge weiterentwickelt werden, so dass sich insbesondere im Bereich Wartung und Instandhaltung Vorteile im Vergleich zu Stahl-Jackets oder XXL-Monopiles ergeben.
Origin | Count |
---|---|
Bund | 114 |
Type | Count |
---|---|
Förderprogramm | 114 |
License | Count |
---|---|
offen | 114 |
Language | Count |
---|---|
Deutsch | 110 |
Englisch | 10 |
Resource type | Count |
---|---|
Keine | 23 |
Webseite | 91 |
Topic | Count |
---|---|
Boden | 80 |
Lebewesen und Lebensräume | 82 |
Luft | 85 |
Mensch und Umwelt | 114 |
Wasser | 83 |
Weitere | 114 |