Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.
Aufklaerung der biophysikalischen Wirkungsmechanismen der Lichtreaktion bei der Photosynthese. Schaetzung der Geschwindigkeitskonstanten beim Elektronentransport aus Fluoreszensmessungen am lebenden Blatt. Ziele: Erstellung eines qualitativ und quantitativ korrekten mathematischen Modells. Einsatz von schnellen mathematischen Verfahren der Parameterschaetzung zur Routine-Diagnose von Stress bei Pflanzen unter Belastungen.
Reparaturprozesse; Strahlenwirkung/Hefe; Zellstoffwechsel.
Die Wirkung beschleunigter schwerer Ionen (bis zu Uranionen) mit spezifischen Energien bis zu 10 MeV/u wird an Hefezellen untersucht. Es kommen hierbei sowohl feuchte als auch trockene Systeme zum Einsatz. Die untersuchten Parameter sind Ueberlebensverhalten sowie biochemische zellulaere Veraenderungen.
Es handelt sich einmal um die Messung der passiven elektrischen Eigenschaften von Zellen und von Gewebe. Diese Daten werden benoetigt, um Aussagen ueber die Wechselwirkung elektromagnetischer Felder mit biologischen Zellen und Organismen zu machen. Bisher wurden Leitfaehigkeitsmessungen an Zellsuspensionen (Erythrocyten, Ascitestumorzellen) und an Zytoplasmafraktionen durchgefuehrt, sowie die elektrische Messungen mit Hilfe von intrazellulaeren Elektroden an Einzelzellen. Zum anderen werden biophysikalische Modellvorstellungen im Hinblick auf die biologischen Wirkungen nicht-ionisierender Strahlen auf den Menschen entwickelt. Insbesondere sind bisher Modellrechnungen ueber die feldbedingte Erzeugung von Aktionspotentialen an erregbaren Zellen, sowie ueber die Einwirkung elektrischer, magnetischer und elektromagnetischer Felder auf das Zentralnervensystem des Menschen durchgefuehrt worden.
Die Auswirkung des Kraftwerkes Freudenau auf die Amphibienfauna im Bereich der Klosterneuburger Au soll dokumentiert werden.
In diesem Projekt schlagen wir eine experimentelle und theoretische Zusammenarbeit vor, um lebende Aktuatoren aus gleitenden, fädigen Cyanobakterien zu entwickeln. Diese phototrophen Organismen spielen sowohl aktuell als auch historisch eine wichtige Rolle im Kohlenstoffkreislauf der Erde, da sie beispielsweise den atmosphärischen Sauerstoff und große Teile unserer fossilen Brennstoffe erzeugten. Filamente bestehen aus vielen linear verketteten Zellen. Sie haben einen Durchmesser von nur wenigen Mikrometern, können aber bis zu einigen Millimetern lang werden. In Kontakt mit festen Oberflächen oder anderen Fäden gleiten sie entlang ihrer Kontur und reagieren auf Lichtgradienten durch Richtungsumkehr. Die zu Grunde liegenden Mechanismen sind noch nicht vollständig geklärt. In natürlichen Lebensräumen führt diese Bewegung zur Aggregation in dichte Kolonien, die sich je nach Umgebungsbedingungen zusammenziehen oder wieder zerstreuen können, was eine kollektive Akklimatisierung ermöglicht. Wir werden diese Eigenschaften nutzen, um anpassungsfähige lebende Aktuatoren zu entwickeln, d. h. ein Material, das durch Stimulation mit Licht seine Form verändern kann. Die Bakterien werden in eine Matrix eingebettet, typischerweise ein gel- oder faserbasiertes Material mit maßgeschneiderten Eigenschaften und Strukturen, die im Projekt entwickelt werden. Indem wir die Bakterien mit Hilfe von Lichtmustern steuern und ausrichten, wollen wir ein aktives Netzwerk im Gerüst aufbauen, das sich bei Stimulation zusammenziehen kann. Die Kräfte aus dem aktiven Netzwerk werden entweder durch Adhäsion oder mechanische Verzahnung zwischen aktiven und passiven Komponenten übertragen. Durch die Abstimmung der gegenseitigen Ausrichtung von aktiven und passiven Netzen und ihrer Anisotropie wollen wir eine Kontrolle der Deformation erreichen. Auf langen Zeitskalen wird das Material adaptiv sein, da langfristige einwirkende Lichtmuster eine topologische Neuordnung des aktiven Netzes bewirken, so dass zwischen verschiedenen Aktuationsmodi gewechselt werden kann. Die Entwicklung von Manipulationsstrategien, die in der Lage sind, mechanische Arbeit zu extrahieren, erfordert Kenntniss der raum-zeitlichen Organisation der Krafterzeugung einzelner Filamente und ihrer Ensembles, welche bisher nicht verfügbar ist und in diesem Projekt gewonnen werden soll. Im Gegensatz zu den meisten bisher untersuchten lebenden Aktuatoren basiert unser System auf langen, flexiblen und beweglichen polymeren Bestandteilen, die äußerst robust und von Natur aus durch Licht stimulierbar sind: Die Fasernatur der lebenden Bestandteile ermöglicht es, stark verflochtene Netzwerke zu schaffen, die in einem breiten Spektrum von Umgebungsbedingungen bestehen können. Ihre Beweglichkeit und Reaktionsfähigkeit ermöglicht es, das Netzwerk selbst zu aktivieren, ohne dass die lebenden Bestandteile aufwendig modifiziert werden müssen.
Kontinuierliche Kulturen; Strahlenschaeden; Systemtheorie.
Getreide im Allgemeinen und Reis im Besonderen sind die Hauptnahrungsquelle einer stetig wachsende Weltbevölkerung. Viele dieser Kulturen werden auf intensiv genutzten Feldern angebaut, denen regelmäßig Bodennährstoffe durch Düngung zugefügt werden müssen. Aufgrund der hohen Kosten und des Energiebedarfs, ist es notwendig zukünftig den Einsatz von Düngemittel zu beschränken und eine nachhaltigere Form der Landwirtschaft zu etablieren. Kulturpflanzen, die Nährstoffe effizienter als die derzeit verfügbaren Linien nutzen, können dazu beitragen, diese Ziele zu erreichen. Kalium (K+) ist der wichtigste kationische Nährstoff und sein Transport wurde intensiv an der Modellpflanze Arabidopsis untersucht. Über die Transportproteine, welche die K+ -Flüsse in Getreide bewirken, ist jedoch wenig bekannt. Unsere vorherige Studie hat wichtige Unterschiede in der Gewebelokalisierung und den Aktivierungsmechanismen von K+ -Effluxkanälen zwischen Reispflanzen und Arabidopsis gezeigt. Im vorgeschlagenen Projekt konzentrieren wir uns auf K+ -Effluxkanäle des Shaker-Typs und der HAK/KUP K+-Transporterfamilie, die den Kaliumtransport in Reispflanzen von der Wurzel zum Spross und innerhalb der Stoma-Komplexe der Blätter ermöglichen. Wir werden die Zelltypen identifizieren, welche die ausgewählten K+-Transportproteine exprimieren und Reispflanzen erzeugen, denen funktionelle Versionen dieser Proteine fehlen. Diese transgenen Linien werden bezüglich des Wachstums, Wasserverbrauchs und der Ertragsausbeute mit Wildtyp-Reispflanzen unter Gewächshaus- und Freilandbedingungen verglichen. Darüber hinaus werden wir die K+ -Effluxkanäle und -Transporter von Reis in Arabidopsis-Schließzellen und Xenopus-Oozyten exprimieren, um ihre biophysikalischen Eigenschaften wie Ionenselektivität und spannungsabhängige Aktivierung zu charakterisieren. Im Zentrum unserer Aufmerksamkeit steht die Rolle der ausgewählten K+-Kanäle und -Transporter im Xylem und bei der Stoma-Bewegung. Wir werden fluoreszenzmarkierte K+-Kanäle und Transporter verwenden, um zu untersuchen, ob die Transportproteine eine polare subzelluläre Lokalisation aufweisen. Zudem wird die Funktion dieser Transporter mit Einzelzellentechniken untersucht, bei denen ionenselektive Elektroden zum Einsatz kommen. Unsere Studie soll Einblicke zur spezifischen Rolle der K+ -Effluxkanälen und -Transportern auf zellulärer Ebene gewinnen und deren Bedeutung für das Wachstums der Reispflanzen unter Freilandbedingungen aufklären. Dieses Wissen wird für die Züchtung von Reissorten, die mit einem geringeren Bedarf an K+ -Dünger, bei gleichzeitiger Aufrechterhaltung eines guten Nährstoffgehaltes, von großer Bedeutung sein. Nutzpflanzen mit solchen optimierten Eigenschaften werden wichtig sein, um eine nachhaltige Landwirtschaft und unseren zukünftigen Nahrungsmittelbedarf sicherzustellen.
Obwohl die meisten Kunststoffe sehr biostabil sind, gibt es klare Belege dafür, dass Mikroben diese Materialien enzymatisch abbauen können. Durch die Kombination verschiedener biochemischer und experimenteller Techniken mit Computersimulationen wollen wir verstehen, welche Eigenschaften ein Enzym haben muss, um Kunststoffe effizient angreifen und abbauen zu können. In dieser Hinsicht wird das kürzlich entdeckte Enzym PETase, das PET abbauen kann, als Modellsystem dienen. Dieses Enzym ist besonders interessant, da es strukturell und funktionell eng mit der Enzymegruppe der Cutinasen verwandt ist, von denen einige Vertreter auch PET angreifen können, wenn auch weniger effizient. Andere Cutinasen sind dazu jedoch nicht in der Lage. Darüber hinaus wollen wir nach neuen Enzymen suchen, die Kunststoffe wie zum Beispiel Polystyrol abbauen.
| Origin | Count |
|---|---|
| Bund | 114 |
| Land | 3 |
| Type | Count |
|---|---|
| Förderprogramm | 112 |
| Text | 3 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 5 |
| offen | 112 |
| Language | Count |
|---|---|
| Deutsch | 99 |
| Englisch | 42 |
| Resource type | Count |
|---|---|
| Keine | 70 |
| Webseite | 47 |
| Topic | Count |
|---|---|
| Boden | 66 |
| Lebewesen und Lebensräume | 97 |
| Luft | 59 |
| Mensch und Umwelt | 117 |
| Wasser | 49 |
| Weitere | 116 |